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Abstract: The common sense on the division by zero with
the long and mysterious history is wrong and our basic idea on
the space around the point at infinity is also wrong since Euclid.
On the gradient or on differential coefficients we have a great
missing since tan(π/2) = 0. Our mathematics is also wrong in
elementary mathematics on the division by zero. In this book in
a new and definite sense, we will show and give various applica-
tions of the division by zero 0/0 = 1/0 = z/0 = 0. In particular,
we will introduce several fundamental concepts in calculus, Eu-
clidean geometry, analytic geometry, complex analysis and dif-
ferential equations. We will see new properties on the Laurent
expansion, singularity, derivative, extension of solutions of dif-
ferential equations beyond analytical and isolated singularities,
and reduction problems of differential equations. On Euclidean
geometry and analytic geometry, we will find new fields by the
concept of the division by zero. We will collect many concrete
properties in mathematical sciences from the viewpoint of the
division by zero. We will know that the division by zero is our
elementary and fundamental mathematics.

Key Words: Division by zero, division by zero calculus,
singularity, derivative, differential equation, 0/0 = 1/0 = z/0 =
0, tan(π/2) = 0, log 0 = 0, infinity, discontinuous, point at in-
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finity, Puha’s horn torus model, Däumler’s horn torus model,
gradient, Laurent expansion, extension of solutions of differen-
tial equations, reduction problems of differential equations, ana-
lytic geometry, singular integral, conformal mapping, Euclidean
geometry, Wasan, absolute function theory, Isabelle/HOL, Rie-
mann zeta function, axiom.
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Preface

The division by zero has a long and mysterious history all
over the world (see, for example, [11, 75] and the Google site
with the division by zero) with its physical viewpoint since the
document of zero in India in AD 628. In particular, note that
Brahmagupta (598 -668 ?) established four arithmetic oper-
ations by introducing 0 and at the same time he defined as
0/0 = 0 in Brāhmasphuṭasiddhānta. We have been, however,
considering that his definition 0/0 = 0 is wrong for over 1300
years, but, we will see that his definition is right and suitable.

The division by zero 1/0 = 0/0 = z/0 itself will be quite
clear and trivial with several natural extensions of fractions
against the mysteriously long history, as we can see from the
concept of the Moore-Penrose generalized inverse to the funda-
mental equation az = b, whose solution leads to the definition
of z = b/a.

However, the result (definition) will show that for the ele-
mentary mapping

W =
1

z
,

the image of z = 0 is W = 0 (should be defined from the
form). This fact seems to be a curious one in connection with
our well-established popular image for the point at infinity on
the Riemann sphere ([2]). As the representation of the point at
infinity of the Riemann sphere by the zero z = 0, we will see
some delicate relations between 0 and ∞ which show a strong
discontinuity at the point of infinity on the Riemann sphere. We
did not consider any value of the elementary function W = 1/z
at the origin z = 0, because we did not consider the division
by zero 1/0 in a good way. Many and many people consider
its value by limiting like +∞ and −∞ or the point at infinity
as ∞. However, their basic idea comes from continuity with
the common sense or based on the basic idea of Aristotele. –
For the related Greek philosophy, see [99, 100, 101]. However,
as the division by zero we will consider the value of the func-
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tion W = 1/z as zero at z = 0. We will see that this new
definition is valid widely in mathematics and mathematical sci-
ences, see ([41, 60]) for example. Therefore, the division by
zero will give great impacts to calculus, Euclidean geometry,
analytic geometry, differential equations, complex analysis at
the undergraduate level and to our basic idea for the space and
universe.

We have to arrange globally our modern mathematics at
our undergraduate level. Our common sense on the division by
zero will be wrong, with our basic idea on the space and universe
since Aristotele and Euclid. We would like to show clearly these
facts in this book. The content is at an undergraduate level.

Close the mysterious and long history of division by zero that
may be considered as a symbol of the stupidity of the human
race and open the new world since Aristotele - Euclid.

March, 2020 Kiryu, Japan Saburou Saitoh
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A typical wrong idea will be given as follows:
mathematical life is very good without division by zero

(2018.2.8.21:43).
S. K. Sen and R. P. Agarwal [88] referred to the paper [36] in

connection with division by zero, however, their understandings
on the paper seem to be not suitable (not right) and their ideas
on the division by zero seem to be traditional, indeed, they
stated as a conclusion of the introduction of the book that:

“Thou shalt not divide by zero” remains valid eter-
nally.
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We Can Divide the Numbers and Analytic Functions
by Zero with a Natural Sense.
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1 INTRODUCTION
By a natural extension of fractions

b

a
(1.1)

for any complex numbers a and b, we found the simple and
beautiful result, for any complex number b

b

0
= 0, (1.2)

incidentally in [80] by the Tikhonov regularization for the Hadamard
product inversions for matrices, and we discussed their prop-
erties and gave several physical interpretations on the general
fractions in [36] for the case of real numbers. The result is a
very special case for general fractional functions in [14].

The division by zero has a long and mysterious story over
the world (see, for example, C. B. Boyer [11], H. G. Romig [75]
and the Google site with the division by zero) with its physical
viewpoint since the document of zero in India in AD 628. In
particular, note that Brahmagupta (598 -668?) established four
arithmetic operations by introducing 0 and at the same time he
defined as 0/0 = 0 in Brāhmasphuṭasiddhānta (648). Our world
history, however, stated that his definition 0/0 = 0 is wrong for
over 1300 years, but, we will see that his definition is right and
suitable.

Indeed, we will show typical examples for 0/0 = 0. How-
ever, in this introduction, these examples are based on some
natural feelings and are not given as mathematics, because we
do still not give the definition of 0/0. However, following our
new mathematics, these examples may be accepted as natural
ones later.

The conditional probability P (A|B) for the probability of A
under the condition that B happens is given by the formula

P (A|B) =
P (A ∩B)

P (B)
.
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If P (B) = 0, then, of course, P (A ∩ B) = 0 and from the
meaning, P (A|B) = 0 and so, 0/0 = 0.

For the representation of inner product A ·B in vectors

cos θ =
A ·B
AB

=
AxBx +AyBy +AzBz√

A2
x +A2

y +A2
z

√
B2

x +B2
y +B2

z

,

if A or B is the zero vector, then we see that 0 = 0/0. In
general, the zero vector is orthogonal for any vector and then,
cos θ = 0.

For this paragraph for our old version, Professor J. Cza-
jko gave kindly the detailed comments following his some gen-
eral idea for the division by zero under the multispatial reality
paradigm and stated in the last part:

As one can see, the single-space reality paradigm, which is
unspoken in the former mathematics and physics, creates
tacitly evaded inconsistencies even at the logical level of
mathematical reasonings.
Dieudonné ([26]) has also tentatively assumed xy = 0
wherever one of the variables is 0 and the other ∞ [*],
which is similar to 0/0 = 0. Besides, if your formula (1.2)
would be rendered as b/0 = 0+ i0 then it might lead one
to question whether or not the still reigning single-space
reality paradigm is admissible in general.

[*] Dieudonné J. Treatise on analysis II. NewYork: Aca-
demic Press, 1970, p.151.

Look his basic great references, [18, 19].

For the differential equation

dy

dx
=

2y

x
,
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we have the general solution with constant C

y = Cx2.

At the origin (0, 0) we have

y′(0) =
0

0
= 0.

For three points a, b, c on a circle with its center at the origin
on the complex z-plane with its radius R, we have

|a+ b+ c| = |ab+ bc+ ca|
R

.

If R = 0, then a, b, c = 0 and we have 0 = 0/0.
For a circle with its radius R and for an inscribed triangle

with its side lengths a, b, c, and further for the inscribed circle
with its radius r for the triangle, the area S of the triangle is
given by

S =
r

2
(a+ b+ c) =

abc

4R
.

If R = 0, then we have

S = 0 =
0

0

(H. Michiwaki: 2017.7.28.). We have the identity

r =
2S

a+ b+ c
.

If a+ b+ c = 0, then we have

0 =
0

0
.

Meanwhile, we obtain the differential equation:

da

cosA
+

db

cosB
+

dc

cosC
= 0.
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When we fix A = π/2 and so a = 2R, we obtain

0

0
+

db

cosB
+

dc

cosC
= 0.

Therefore, we have to have 0
0 = 0.

For the distance d of the centers of the inscribed circle and
circumscribed circle, we have the Euler formula

r =
1

2
R− d2

2R
.

If R = 0, then we have d = 0 and

0 = 0− 0

0
.

For the second curvature

K2 =
(
(x′′)2 + (y′′)2 + (z′′)2

)−1 ·

∣∣∣∣∣∣
x′ y′ z′

x′′ y′′ z′′

x′′′ y′′′ z′′′

∣∣∣∣∣∣ ,
if (x′′)2 + (y′′)2 + (z′′)2 = 0; that is, for the case of lines, then
0 = 0/0.

For the function sign x = x/|x|, we have, automatically, sign
x = 0 at x = 0.

We have furthermore many concrete examples as we will see
in this book.

However, we do not know the reason and motivation of the
definition of 0/0 = 0 by Brahmagupta, furthermore, for the im-
portant case 1/0 we can not find any result there. – Indeed,
even nowadays, we can not find any good definition of the divi-
sion by zero except our results and find many and many wrong
logics on the division by zero, without the good definition of the
division by zero z/0.

Professor H. Okumura ([54]) considered for Brahmagupta’s
idea as follows:
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Indeed if a 6= 0, for the inversion a−1 of a
z

a
= z · a−1

Therefore in the case a = 0, for some X we assume
that

z

0
= z ·X.

However he could not specify the number X in this
case. Hence he could not refer to z/0 for any number
z. But the right side always equals 0 if z = 0 for any
X. Thereby he could consider the following way:

0

0
= 0 ·X = 0,

which implies that 0/0 = 0. This seems to be the
reason why he only referred to 0/0 = 0.

S. Takahasi ([36]) discovered a simple and decisive inter-
pretation (1.2) by analyzing the extensions of fractions and by
showing the complete characterization for the property (1.2) in
the following:

Proposition 1.1 Let F be a function from C × C to C
satisfying

F (b, a)F (c, d) = F (bc, ad)

for all
a, b, c, d ∈ C

and
F (b, a) =

b

a
, a, b ∈ C, a 6= 0.

Then, we obtain, for any b ∈ C

F (b, 0) = 0.
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Note that the complete proof of this proposition is simply
given by 2 or 3 lines, as we will give its complete proof later. In
order to confirm the uniqueness result by Professor Takahasi,
Professor Matteo Dalla Riva gave the proposition independently
of Professor Takahasi as stated in ([36]). Indeed, when Taka-
hasi’s result was informed, he was first negative for the Takahasi
uniqueness theorem.

In the long mysterious history of the division by zero, this
proposition seems to be decisive. The paper had been published
over fully five years ago, but we see still curious information on
the division by zero and we see still many wrong opinions on
the division by zero with confusions.

Indeed, Takahasi’s assumption for the product property should
be accepted for any generalization of fraction (division). With-
out the product property, we will not be able to consider any
reasonable fraction (division).

Following Proposition 1.1, we should define

F (b, 0) =
b

0
= 0,

and consider, for any complex number b, as (1.2); that is, for
the mapping

W = f(z) =
1

z
, (1.3)

the image of z = 0 is W = 0 (should be defined from the
form). This fact seems to be a curious one in connection with
our well-established popular image for the point at infinity on
the Riemann sphere ([2]). As the representation of the point at
infinity on the Riemann sphere by the zero z = 0, we will see
some delicate relations between 0 and ∞ which show a strong
discontinuity at the point of infinity on the Riemann sphere. We
did not consider any value of the elementary function W = 1/z
at the origin z = 0, because we did not consider the division
by zero 1/0 in a good way. Many and many people consider its
value at the origin by limiting like +∞ and −∞ or by the point
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at infinity as ∞. However, their basic idea comes from conti-
nuity with the common sense or based on the basic idea of Aris-
totele. – For the related Greece philosophy, see [99, 100, 101].
However, as the division by zero we will consider its value of
the function W = 1/z as zero at z = 0. We will see that this
new definition is valid widely in mathematics and mathematical
sciences, see ([41, 60]) for example. Therefore, the division by
zero will give great impacts to calculus, Euclidean geometry,
analytic geometry, complex analysis and the theory of differen-
tial equations at an undergraduate level and furthermore to our
basic idea for the space and universe.

In addition, for the fundamental function (1.3), note that
the function is odd

f(z) = −f(−z)

and if the function may be extended as an odd function at the
origin z = 0, then the identity f(0) = 1/0 = 0 has to be satisfied.
Further, if the equation

1

z
= 0

has a solution, then the solution has to be z = 0.

Note that the identity∫ ∞

0
sin(2πtξ)dξ =

1

2π

1

t
,

so, for t = 0, the both should be zero (H. Kobayashi: 2019.3.9.10:49).
Of course, here the integral is considered in the sense of distri-
bution theory.

Meanwhile, the division by zero (1.2) was derived from sev-
eral independent ideas as in:

1) by the generalization of fractions by the Tikhonov reg-
ularization or by the Moore-Penrose generalized inverse to the
fundamental equation az = b that leads to the definition of the
fraction z = b/a,
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2) by the intuitive meaning (from the concept of repeated
subtraction) of fractions (division) by H. Michiwaki,

3) by the unique extension of fractions by S. Takahasi, as in
the above,

4) by the extension of the fundamental function W = 1/z
from C \ {0} onto C such that W = 1/z is a one to one and
onto mapping from C \ {0} onto C \ {0} and the division by
zero 1/0 = 0 is a one to one and onto mapping extension of the
function W = 1/z from C onto C,

and
5) by considering the values of functions with mean values

of functions.
Furthermore, in ([40]) we gave the following results in order

to show the reality of the division by zero in our world:

A) a simple field structure as the number system containing
the division by zero — the Yamada field Y,

B) by the gradient of the y axis on the (x, y) plane — tan π
2 =

0,
C) by the reflection W = 1/z of W = z with respect to the

unit circle with its center at the origin on the complex z plane
— the reflection point of zero is zero, (The classical result is
wrong, see [60]),

and
D) by considering rotation of a right circular cone having

some very interesting phenomenon from some practical and
physical problem.

Furthermore, in ([41],[80]), we discussed many division by
zero properties in the Euclidean plane - however, precisely, our
new space is not the Euclidean space. In ([37]), we gave beau-
tiful geometrical interpretations of determinants from the view-
point of the division by zero. More recently, we see the great
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impact to the Euclidean geometry in connection with Wasan in
([61, 50, 62, 63, 64, 65, 51]).

We will introduce a very beautiful horn torus model realizing
our division by zero for the classical Riemann sphere from ([24]).
We will be able to see pleasantly the whole world on the horn
torus model that is the coincidence of zero point and the point
at infinity by a conformal mapping from the extended complex
plane onto the horn torus.

Our typical results were surprisingly confirmed by Isabelle/HOL
system by José Manuel Rodriguez Caballero. We will refer the
details in this book.

We will see the related basic references with division by zero.

J. A. Bergstra, Y. Hirshfeld and J. V. Tucker [9] and J. A.
Bergstra [10] discussed the relationship between fields and the
division by zero, and the importance of the division by zero for
computer science. It seems that the relationship of the division
by zero and field structures are abstract in their papers.

J. A. Bergstra (2019.7.29.19:15) gave his general survey:

You can find the paper by searching for Transmathemat-
ica on google.
If you search ”division by zero a survey of options” in
Google the paper appears at once,

best wishes, Jan Bergstra

Meanwhile, J. Carlström ([12]) introduced the wheel theory;

wheels are a type of algebra where division is always de-
fined. In particular, division by zero is meaningful. The
real numbers can be extended to a wheel, as can any com-
mutative ring. The Riemann sphere can also be extended
to a wheel by adjoining an element ⊥, where 0/0 = ⊥.
The Riemann sphere is an extension of the complex plane
by an element∞, where z/0 =∞ for any complex z 6= 0.
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However, 0/0 is still undefined on the Riemann sphere,
but is defined in its extension to a wheel. The term wheel
is introduced by the topological picture � of the projec-
tive line together with an extra point ⊥ = 0/0.

Similarly, T. S. Reis and J.A.D.W. Anderson ([73, 74]) ex-
tends the system of the real numbers by defining division by
zero with three infinities +∞,−∞,Φ (Transreal Calculus).

However, we can introduce simply a very natural field con-
taining the division by zero that is a natural extension (modifi-
cation) of our mathematics, as the Yamada field.

In connection with the deep problem with physics of the
division by zero problem, see J. Czajko [18, 19, 20]. However,
we will find many logical confusions in the papers, as we refer
to the details later.

J. P. Barukčić and I. Barukčić ([7]) discussed the relation
between the division 0/0 and the special relative theory of Ein-
stein. However it seems that their result 0/0 = 1 is curious with
their logics. Their result contradicts with ours.

L. C. Paulson stated that I would guess that Isabelle has
used this convention 1/0 = 0 since the 1980s and introduced
his book [46] referred to this fact. However, in his group the im-
portance of this fact seems to be entirely ignored at this moment
as we see from the book. He sent his e-mail as follows:

There are situations when it is natural to define x/0
= 0. For example, if you define division using prim-
itive recursion, in which all functions are total, you
will get this identity. There is nothing deep about
it.
If you adopt this convention, it turns out that some
identities involving division hold unconditionally, such
as (x+y)/z = x/z + y/z. Other identities continue
to require 0 to be treated separately, such as x/x =
1.
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The idea that x/0 = 0 is only a convention. It does
not change mathematics in any significant way and
it does not lead to contradictions either.
(2017.07.04.00:22).

Jose Manuel Rodriguez Caballero introduced the informa-
tion:

you will find the discussion between Prof. Lawrence
Paulson (https://www.cl.cam.ac.uk/ lp15/) and Prof.
Harvey Friedman (https://math.osu.edu/people/friedman.8)
concerning the division by zero.

For more recent idea on the division by zero, see L. C. Paul-
son ([67]). It seems that his group is not interested in the divi-
sion by zero still.

For the recent great works, see E. Jeřábek and B. Santangelo
[32, 87]. They stated in their abstracts of their papers as follows:

E. Jeřábek [32]:

For any sufficiently strong theory of arithmetic, the set
of Diophantine equations provably unsolvable in the the-
ory is algorithmically undecidable, as a consequence of
the MRDP theorem. In contrast, we show decidability
of Diophantine equations provably unsolvable in Robin-
son’s arithmetic Q. The argument hinges on an analysis
of a particular class of equations, hitherto unexplored in
Diophantine literature. We also axiomatize the universal
fragment of Q in the process.

B. Santangelo [87]:
The purpose of this paper is to emulate the process used
in defining and learning about the algebraic structure
known as a Field in order to create a new algebraic struc-
ture which contains numbers that can be used to define
Division By Zero, just as i can be used to define

√
−1.
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This method of Division By Zero is different from other
previous attempts in that each α

0 has a different unique,
numerical solution for every possible α, albeit these nu-
merical solutions are not any numbers we have ever seen.
To do this, the reader will be introduced to an algebraic
structure called an S-Structure and will become famil-
iar with the operations of addition, subtraction, multipli-
cation and division in particular S-Structures. We will
build from the ground up in a manner similar to building
a Field from the ground up. We first start with general
S-Structures and build upon that to S-Rings and even-
tually S-Fields, just as one begins learning about Fields
by first understanding Groups, then moving up to Rings
and ultimately to Fields. At each step along the way, we
shall prove important properties of each S-Structure and
of the operations in each of these S-Structures. By the
end, the reader will become familiar with an S-Field, an
S-Structure which is an extension of a Field in which we
may uniquely define α/0 for every non-zero α which be-
longs to the Field. In fact, each α

0 has a different, unique
solution for every possible α. Furthermore, this Division
By Zero satisfies α/0 = q such that 0 · q = α, making it
a true Division Operation,

Meanwhile, we should refer to up-to-date information:
Riemann Hypothesis Addendum -

Breakthrough Kurt Arbenz :
https://www.researchgate.net/publication/272022137

Riemann Hypothesis Addendum - Breakthrough.
Here, we recall Albert Einstein’s words on mathematics:

Blackholes are where God divided by zero. I don’t believe
in mathematics. George Gamow (1904-1968) Russian-
born American nuclear physicist and cosmologist remarked
that ”it is well known to students of high school algebra”
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that division by zero is not valid; and Einstein admitted
it as the biggest blunder of his life (Gamow, G., My
World Line (Viking, New York). p 44, 1970).

We have still curious situations and opinions on the division
by zero; in particular, two great challengers Jakub Czajko [19]
and Ilija Barukčić [8] on the division by zero in connection with
physics stated recently that we do not have the definition of the
division 0/0, however 0/0 = 1. They seem to think that a truth
is based on physical objects and is not on our mathematics.

In particular, J. Czajko [21] stated in Section 9 as follows:

Mathematics is mainly about forms and operations, and
thus is truthless, but its objects must not only be consis-
tent but also realistic, i.e. procedurally operational and
structurally constructible. Yet presence of realistic op-
erations and existence of constructible structures for the
operations to be performed on the structures should be
confirmed by experimental results. Mathematical truths
cannot be established by abstract mathematical means
alone. Yet the unconventional division by zero can re-
veal where the mathematical truth is about to vanquish
due to unsubstantiated existential postulates or arbitrar-
ily decreed operations. Mathematics must not be forced
into submission by decrees, for enforcing nonsenses can
backfire by producing faulty/contradictory conclusions,
the acceptance of which can lead to failures.

In such a case, we will not be able to continue discussions
on the division by zero more, because for mathematicians, they
will not be able to follow their logics more. However, then we
would like to ask for the question that what are the values and
contributions of your articles and discussions. We will expect
some contributions, of course.
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This question will reflect to our mathematicians contrary.
We stated for the estimation of mathematics in [78] as follows:
Mathematics is a collection of relations and, good results are
fundamental, beautiful, and give good impacts to human beings.

With this estimation, we stated that the Euler formula

eπi = −1

is the best result in mathematics in details in:

No.81, May 2012 (pdf 432kb) www.jams.or.jp/kaiho/kaiho-
81.pdf

In order to show the importance of our division by zero and
division by zero calculus we are requested to show their impor-
tance with many examples. However, with the results stated in
the references and in this book, we think the importance of our
division by zero may be definitely stated clearly.

It seems that the long and mysterious confusions for the di-
vision by zero were based on its definition. – Indeed, when we
consider the division by zero a/0 in the usual sense as the solu-
tion of the fundamental equation 0 ·z = a, we have immediately
the simple contradiction for a 6= 0, however, such cases 0/0 and
1/0 may happen, in particular, in many mathematical formulas
and in many important physical formulas. The typical example
is the case of x = 0 for the fundamental function y = 1/x.

– As we stated in the above, some researchers considered
that for the mysterious objects 0/0 and 1/0, they considered
them as ideal numbers as in the imaginary number i from its
great success. However, such an idea will not be good as the
number system, as we see simply from the concept of the Ya-
mada field containing the division by zero.

Another important fact was discontinuity for the function
y = 1/x at the origin. Indeed, by the concept of the Moore-
Penrose generalized solution of the fundamental equation ax =
b, the division by zero was trivial and clear as b/0 = 0 in the
general fraction that is defined by the generalized solution of
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the equation ax = b. However, for the strong discontinuity of
the function y = 1/x at the origin, we were not able to accept
the result b/0 = 0 for very long years.

As the number system containing the division by zero, the
Yamada field structure is simple and perfect as a theory. How-
ever for the applications of the division by zero to functions,
we will need the concept of division by zero calculus for the
sake of uniquely determinations of results and for other reasons.

In this book, we will discuss the division by zero in calculus
and Euclidean geometry and introduce various applications to
differential equations and others, and we will be able to see
that the division by zero is our elementary and fundamental
mathematics.

In order to understand our long and wrong basic ideas for
the point at infinity and the mirror image with respect to a
circle, we refer to the properties of the stereographic projection
and the mirror image in details in Sections 3 and 4.

In particular, we will introduce the Puha horn torus model
and the Däumler’s horn torus model that show our new world
realizing our division by zero since Aristotele and Euclid.

This book is an extension of the source file ([72]) of the in-
vited and plenary lecture presented at the International Confer-
ence – Differential and Difference Equations with Applications:

https://sites.google.com/site/sandrapinelas/icddea-2017

In this book, we would like to present clearly the conclusion
of the talk:

The division by zero is uniquely and reasonably determined
as

1/0 = 0/0 = z/0 = 0

in the natural extensions of fractions.

We have to change our basic ideas for our space and world.
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We have to change globally our textbooks and scientific books
on the division by zero.
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2 INTRODUCTION AND DEFINITIONS
OF GENERAL FRACTIONS

We first introduce several definitions of our general fractions
containing the division by zero. This section will give the strong
and natural background for our division by zero.

2.1 By the Tikhonov regularization
For any real numbers a and b containing 0, we will introduce
general fractions

b

a
. (2.1)

We will think that for the fraction (2.1), it will be given by
the solution of the equation

ax = b.

Here, in order to see its essence, we will consider all on the
real number field R. However, for b 6= 0, since 0 × x = 0 this
equation has not any solution for the case a = 0, and so, people
thought that the division by zero is, in general, impossible for
long years. In order to consider some general concept for the
division, we will need some new idea.

At first, by the concept of the Tikhonov regularization method,
we will consider the equation as follows:

For any fixed λ > 0, the minimum member of the Tikhonov
function in x

λx2 + (ax− b)2;

that is,
xλ(a, b) =

ab

λ+ a2

may be considered as the fraction in the sense of Tikhonov with
parameter λ, in a generalized sense. Note that the limit

lim
λ→+0

xλ(a, b)
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exists always. By the limit

lim
λ→+0

xλ(a, b) =
b

a
, (2.2)

we will define the general fractions b/a.
Note that, for a 6= 0, the definition (2.2) is the same as in the

ordinary sense. However, since xλ(0, b) = 0, always, for a = 0,
we obtain the desired results b/0 = 0.

The result (2.2) is, of course, a trivial Moore-Penrose gen-
eralized inverse (solution) for the equation ax = b. The Moore-
Penrose generalized inverse gives very natural and generalized
solutions for some general linear equations and its theory is well-
established as a classical one. In this sense, we can say that our
division by zero is trivial and clear against the long and myste-
rious history of the division by zero.

Indeed, we will be able to see that our division by zero is
known by the Moore-Penrose generalized inverse. We will recall
its essences.

For a complex number α and the associated matrix A, the
correspondence

α = a1 + ia2 ←→ A =

(
a1 −a2
a2 a1

)
is homomorphism between the complex number field and the
matrix field of 2× 2.

For any matrix A, there exists a uniquely determined Moore-
Penroze generalized inverse A† satisfying the conditions, for
complex conjugate transpose ∗,

AA†A = A,

A†AA† = A†A,

(AA†)∗ = AA†,

and
(A†A)∗ = A†A,
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and it is given by, for A 6= O, not zero matrix,

A† =
1

|a|2 + |b|2 + |c|2 + |d|2
·
(
a c

b d

)
for

A =

(
a b
c d

)
.

If A = O, then A† = O.

In general, for a vector x ∈ Cn, its Moore-Penrose general-
ized inverse x† is given by

x† =

{
0∗ for x = 0

(x∗x)−1x∗ for x 6= 0.

For the general theory of the Tikhonov regularization and
many applications, see the cited references, for example, [86].

2.2 By the Takahasi uniqueness theorem
S. Takahasi ([92]) established a simple and natural interpreta-
tion (2.1) by analyzing any extensions of fractions and by show-
ing the complete characterization for the generalized fractions
(2.1). Furthermore, he examined several fundamental proper-
ties of the general fractions from the viewpoint of operator the-
ory. See [92]. His result will show that the result (2.1) should
be accepted as a natural one.

Theorem 2.1 Let F be a function from C × C to C such
that

F (a, b)F (c, d) = F (ac, bd)

for all
a, b, c, d ∈ C

and
F (a, b) =

a

b
, a, b ∈ C, b 6= 0.
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Then, we obtain, for any a ∈ C

F (a, 0) = 0.

Proof. Indeed, we have

F (a, 0) = F (a, 0)1 = F (a, 0)
2

2
= F (a, 0)F (2, 2) =

F (a · 2, 0 · 2) = F (2a, 0) = F (2, 1)F (a, 0) = 2F (a, 0).

Thus F (a, 0) = 2F (a, 0) which implies the desired result
F (a, 0) = 0 for all a ∈ C.

Several mathematicians pointed out to the author for the
publication of the paper ([36]) that the notations of 100/0 and
0/0 are not good for the sake of the generalized sense, however,
there does not exist other natural and good meaning for them.
Why should we need and use any new notations? Any new
notation will create complicated notations and confusions for
fractions, as we see from this book. Indeed, we will see in this
book that many and many fractions in our formulas will have
this meaning with the concept of the division by zero calculus
for the case of functions.

We have still curious confusions for the division by zero.
Their basic reason will be given by that we were not able to
give any reasonable definition of the division by zero.

2.3 By the Yamada field containing the division by
zero

As an algebraic structure, we will give the simple field structure
containing the division by zero.

We consider
C2 = C×C

and the direct decomposition

C2 = (C \ {0})2+({0} × (C \ {0}))+((C \ {0})× {0})+{0}2 .
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Then, we note that
Theorem 2.2 For the set C2, we introduce the relation ∼:

for any (a, b), (c, d) ∈ (C \ {0})2,

(a, b) ∼ (c, d)⇐⇒ ad = bc

and, for any (a, b), (c, d) 6∈ (C \ {0})2, in the above direct de-
composition

(a, b) ∼ (c, d).

Then, the relation ∼ satisfies the equivalent relation.
Definition 2.1 For the quotient set by the relation ∼ of the

set C2, we write it by A and for the class containing (a, b), we
shall write it by a

b .
Note that
Lemma 2.1 In C2, if (a, b) ∼ (m,n) and (c, d) ∼ (p, q),

then (ac, bd) ∼ (mp, nq).
Then, we obtain the main result, as we can check easily:
Theorem 2.3 For any members a

b ,
c
d ∈ A, we introduce the

product · as follows:
a

b
· c
d
=
ac

bd

and the sum +:

a

b
+
c

d
=


c
d , if a

b = 0
1 ,

a
b , if c

d = 0
1 ,

ad+bc
bd , if a

b ,
c
d 6=

0
1 ,

then, the product and the sum are well-defined and A becomes
a field Y.

Proof. Indeed, we can see easily the followings: 1) Under
the operation + , Y becomes an abelian group and 0

1 = 0Y is
the unit element.
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2) Under the operation · , Y \ {0Y } becomes an abelian
group and 1

1 is the unit element.
3) In Y, operations + and · satisfy distributive law.

Remark. In C2, when (a, b) ∼ (m,n) and (c, d) ∼ (p, q),
the relation (ad + bc, bd) ∼ (mq + np, nq) is, in general, not
valid. In general,

a

b
+
c

d
=
ad+ bc

bd

is not well-defined and is not valid.

Indeed, (1, 2) ∼ (1, 2) and (3, 0) ∼ (0, 3), but

(1 · 0 + 2 · 3, 2 · 0) = (6, 0) 6∼ (3, 6) = (1 · 3 + 2 · 0, 2 · 3).

Theorem 2.4 The two fields Y and C are isomorphic.

Proof. Indeed, consider the mapping f from Y to C:

f : x =
a

b
7→

{
ab−1

(
a
b 6= 0Y

)
0

(
a
b = 0Y

)
.

Then, we can see easily the followings: 1)f(x+y) = f(x)+f(y),
2)f(x · y) = f(x)f(y), 3)f(1Y ) = 1, and 4)f is a one to one and
onto mapping from Y to C.

We define a unary operation φY on Y as

φY

(a
b

)
=
b

a
.

For the inverse element of x = a
b 6= 0Y , we shall denote it by

x−1.

Definition 2.2 We define a binary operation / on Y as
follows: For any x, y ∈ Y

x/y = x · φY (y) =

{
xy−1 (y 6= 0Y ) ,

0 (y = 0Y ) .
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We will call the field Y with the operation φY 0-divisible
field or the Yamada field.

Theorem 2.5 C becomes a 0-divisible field.

Proof. Indeed, in C, a unary operation φ = f ◦ φY ◦ f−1

is induced by the homomorphic f from the 0-divisible field C.
Then, for any z ∈ C,

φ(z) =

{
z−1 (z 6= 0) ,

0 (z = 0) .

We, however, would like to state that the division by zero
z/0 = 0 is essentially, just the definition, and we can derive all
properties of the division by zero, essentially, from the definition.
Furthermore, by the idea of this session, we can introduce the
fundamental concept of the divisions (fractions) in any field.

We should use the 0-divisible field Y for the complex num-
bers field C as complex numbers, by this simple modification.

The above introduction of the Yamada field is natural and
very interesting itself. Meanwhile, H. Okumura [53] found that
for the introduction of fractions a/b in the Yamada field, it is
enough with the simple definition that for b 6= 0

a

b
= ab−1

and for b = 0
a

b
= ab.

Therefore, indeed, we can say that the construction of fields
containing division by zero was very simple.
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2.4 By the intuitive meaning of fractions (division)
by H. Michiwaki

We will introduce an another approach. The division b/a may
be defined independently of the product. Indeed, in Japan,
the division b/a ; b waru a (jozan) is defined as how many a ex-
ists in b, this idea comes from subtraction a repeatedly. (Mean-
while, product comes from addition). In Japanese language for
”division”, there exists such a concept independently of prod-
uct. H. Michiwaki and his 6 years old daughter Eko Michiwaki
said for the result 100/0 = 0 that the result is clear, from the
meaning of fractions independently of the concept of product
and they said: 100/0 = 0 does not mean that 100 = 0 × 0.
Meanwhile, many mathematicians had a confusion for the re-
sult. Her understanding is reasonable and may be acceptable.
100/2 = 50 will mean that we divide 100 by 2, then each will
have 50. 100/10 = 10 will mean that we divide 100 by 10, then
each will have 10. 100/0 = 0 will mean that we do not divide
100, and then nobody will have at all and so 0. Furthermore,
they said then the rest is 100; that is, mathematically;

100 = 0 · 0 + 100.

Now, all mathematicians may accept the division by zero 100/0 =
0 with natural feelings as a trivial one.

For simplicity, we shall consider the numbers on non-negative
real numbers. We wish to define the division (or fraction) b/a
following the usual procedure for its calculation, however, we
have to take care for the division by zero. As the first principle,
for example, for 100/2 we shall consider it as follows:

100− 2− 2− 2− ...− 2.

How many times can we subtract 2? At this case, it is 50 times
and so, the fraction is 50. As the second case, for example, for
3/2 we shall consider it as follows:

3− 2 = 1
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and the rest (remainder) is 1, and for the rest 1, we multiple 10,
then we consider similarly as follows:

10− 2− 2− 2− 2− 2 = 0.

Therefore 10/2 = 5 and so we define as follows:

3

2
= 1 + 0.5 = 1.5.

By these procedures, for a 6= 0 we can define the fraction b/a.
Here we do not need the concept of product. Except the zero
division, all results for fractions are valid and accepted. Now,
we shall consider the zero division, for example, 100/0. Since

100− 0 = 100,

that is, by the subtraction 100−0, 100 does not decrease. Then,
we can not say that we were able to subtract any from 100.
Therefore, the subtract number should be understood as zero;
that is,

100

0
= 0.

We can understand this as follows. Division by 0 means that it
does not divide 100 and so, the result is 0. Similarly, we can see
that

0

0
= 0.

As a conclusion, we should define the zero division as, for any b

b

0
= 0.

For complex numbers, we can consider the division z1
z2

, sim-
ilarly, by using the Euler formula

z1
z2

=
r1
r2
{cos(θ1 − θ2) + i sin(θ1 − θ2)}
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for |zj | = rj and arg zj = θj . The problem may be reduced to
one of the division r1

r2
.

H. Michiwaki checked this subsection and recalled his doc-
uments as follows (2018.1.8.0:43): exp(0) = 0, 1 (H. Michi-
waki: 2016.3.21.), 00 = 0 (H. Michiwaki : 2014.9.21, 2015.11.7,
2016.2.14.), cos 0 = 0, 1 (H. Michiwaki: 2016.3.16.), aFa = bFb

(H. Michiwaki: 2015.11.17.), ω = v/r (H. Michiwaki: 2014.2.28.).
See [36] for the details.
As some sense of the division by zero, we note the following

fact:
We will consider the division of the plane by n lines in the

general position. Then, the number of the formed domains are
given by the formula

F (n) =
1

2
(n2 + n+ 2).

For n = 0, we have F (0) = 1; that means that we do not divide
the plane.

Similarly, we will consider the division F (n) of the space R3

by n planes with general positions, then we have:

F (1) = 2

and
F (n+ 1) = F (n) +

1

2
(n2 + n+ 2).

Therefore, for n = 0,

F (1) = F (0) + 1

and therefore,
F (0) = 1;

that is, 0-division means that we do not divide.
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2.5 Other introduction of general fractions
By the extension of the fundamental function W = 1/z from
C \ {0} onto C such that W = 1/z is a one to one and onto
mapping from C \ {0} onto C \ {0} and the division by zero
1/0 = 0 is a one to one and onto mapping extension of the
function W = 1/z from C onto C.

By considering the values of functions with mean values of
functions, we can introduce the general fractions. Note here that
the Cauchy integral formula may be considered as a mean value
theorem. The mean values will be considered as a fundamental
concept in analysis. – In the concept of the division by zero
calculus, we will refer to the exact meaning of this sentence.

On the division by zero in our theory, we will need essen-
tially (not exact sense, we will state later some exact sense) only
one new assumption in our mathematics that for the elementary
function W = 1/z, W (0) = 0. However, for algebraic calcula-
tion of the division by zero, we have to follow the law of the
Yamada field. For functions, however, we have to consider the
concept of the division by zero calculus, as we will develop
the details later with many applications.

We stated, on the division by zero, the importance of the
definition of the division by zero z/0. However, we note that
in our definition it is given as a generalization or extension
of the usual fraction. Therefore, we will not be able to give its
precise meaning at all. For this sense, we do not know the direct
meaning of the division by zero. It looks like a black hole. In
order to know its meaning, we have to examine many properties
of the division by zero by applications.

However, we will purse some more direct meanings for the
division by zero.
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3 STEREOGRAPHIC PROJECTIONS
For a great meaning and importance, we will see that the point
at infinity is represented by zero. Of course, we saw that for the
fundamental function W = 1/z, since 1/0 = 0, we see that the
point at infinity is represented by zero.

3.1 The point at infinity is represented by zero
By considering the stereographic projection, we will be able to
see that the point at infinity is represented by zero.

Consider the sphere (ξ, η, ζ) with its radius 1/2 put on the
complex z = x + iy plane with its center (0, 0, 1/2). From the
north poleN(0, 0, 1), we consider the stereographic projection of
the point P (ξ, η, ζ) on the sphere onto the complex z(= x+ iy)
plane; that is,

x =
ξ

1− ζ
, y =

η

1− ζ
.

If ζ = 1, then, by the division by zero, the north pole corre-
sponds to the origin (0, 0) = 0.

Here, note that

x2 + y2 =
ζ

1− ζ
.

For ζ = 1, by the division by zero, we should consider as 1/0 =
0, not from the expansion

ζ

1− ζ
= −1− 1

ζ − 1
,

– the division by zero calculus that will be discussed in details
later –.

We will consider the unit sphere {(x1, x2, x3);x21+x22+x23 =
1}. From the north pole N(0, 0, 1), we consider the stereo-
graphic projection of the point P (x1, x2, x3) on the sphere onto
the (x, y) plane; that is,

(x1, x2, x3) =
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(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
1− 1/(x2 + y2)

1 + 1/(x2 + y2)

)
.

Then, we see that the north pole corresponds to the origin.
Next, we will consider the semi-sphere (ξ, η, ζ) with its center

C(0, 0, 1) and its radius 1 on the origin on the (x, y) plane. From
the center C(0, 0, 1), we consider the stereographic projection of
the point P (ξ, η, ζ) on the semi- sphere onto the complex (x, y)
plane; that is,

x =
ξ

1− ζ
, y =

η

1− ζ
.

If ζ = 1, then, by the division by zero, the center C corresponds
to the origin (0, 0).

Meanwhile, we will consider the mapping from the open unit
disc with its center at the origin onto R2 in one to one and onto

ξ =
x
√
x2 + y2

1 + x2 + y2
, η =

y
√
x2 + y2

1 + x2 + y2

or
x =

ξ√
ρ(1− ρ)

, y =
η√

ρ(1− ρ)
; ρ2 = ξ2 + η2.

Note that the point (x, y) = (0, 0) corresponds to ρ = 0; (ξ, η) =
(0, 0).

Furthermore, with many examples we will show that the
point at infinity is represented by zero geometrically and ana-
lytically, in the sequel. We have had to change our basic idea
for our space since Euclid.

3.2 A contradiction of classical idea for 1/0 =∞

The infinity ∞ may be considered by the idea of the limiting,
however, we had considered it as a number, for sometimes, typ-
ically, the point at infinity was represented by ∞ for some long
years. However, then ∞ is not clear and is not a definite num-
ber, but some ideal and vague one. For this fact, we will show
a formal contradiction.
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We will consider the stereographic projection by means of
the sphere with its radius 1/2

ξ2 + η2 +

(
ζ − 1

2

)2

=

(
1

2

)2

from the complex z = x + iy plane onto the sphere. Then, we
obtain the correspondences

x =
ξ

1− ζ
, y =

η

1− ζ

and
ξ =

1

2

z + z

zz + 1
, η =

1

2i

z − z
zz + 1

, ζ =
zz

zz + 1
.

In general, two points P and Q1 on the diameter of the sphere
correspond to z and z1, respectively if and only if

zz1 + 1 = 0. (3.1)

Meanwhile, two points P and Q2 on the symmetric points on
the sphere with respect to the plane ζ = 1

2 correspond to z and
z2, respectively if and only if

zz2 − 1 = 0. (3.2)

If the point P is the origin or the north pole, then the points
Q1 and Q2 are the same point. Then, the identities (3.1) and
(3.2) are not valid that show a contradiction.

Meanwhile, if we write (3.1) and (3.2)

z = − 1

z1

and
z =

1

z2
,

respectively, we see that the division by zero (1.2) is valid.
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3.3 Natural meanings of 1/0 = 0

We can see our division by zero for many fractions. We will
show the simple examples.

For constants a and b satisfying

1

a
+

1

b
= k, ( 6= 0, const.)

the function
x

a
+
y

b
= 1

passes the point (1/k, 1/k). If a = 0, then, by the division by
zero, b = 1/k and y = 1/k; this result is natural.

We will consider the line y = m(x − a) + b through a fixed
point (a, b); a, b > 0 with its gradient m. We set A(0,−am+ b)
and B(a− (b/m), 0) that are common points with the line and
both lines x = 0 and y = 0, respectively. Then,

AB
2
= (−am+ b)2 +

(
a− b

m

)2

.

If m = 0, then A(0, b) and B(a, 0), by the division by zero, and
furthermore

AB
2
= a2 + b2.

Then, the line AB is a corresponding line between the origin and
the point (a, b). Note that this line has only one common point
with both lines x = 0 and y = 0. Therefore, this result will be
very natural in a sense. – Indeed, we can understand that the
line AB is broken into two lines (0, b)− (a, b) and (a, b)− (a, 0),
suddenly. Or, the line AB is one connecting the origin and the
point (a, b).

The general line equation through fixed point (a, b) with its
gradient m is given by

y = m(x− a) + b (3.3)
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or, for m 6= 0
y

m
= x− a+ b

m
.

By m = 0, we obtain the equation x = a, by the division by
zero. This equation may be considered as the cases m =∞ and
m = −∞, and these cases may be considered by the strictly
right logic with the division by zero.

By the division by zero, we can consider the equation (3.3)
as a general line equation.

In the Lami’s formula for three vectors A,B,C satisfying

A+B+C = 0,

‖A‖
sinα

=
‖B‖
sinβ

=
‖C‖
sin γ

,

if α = 0, then we obtain

‖A‖
0

=
‖B‖
0

=
‖C‖
0

= 0.

Here, of course, α is the angle of B and C, β is the angle of C
and A, and γ is the angle of A and B.

For the Newton’s formula; that is, for a C2 class function
y = f(x), the curvature K at the origin is given by

K = lim
x→0

∣∣∣∣x22y
∣∣∣∣ = ∣∣∣∣ 1

f ′′(0)

∣∣∣∣ ,
we have for f ′′(0) = 0,

K =
1

0
= 0.

Recall the formula

bn =
1

π

∫ 2π

0
x sinnxdx = − 2

n
,

for
n = ±1,±2, ..., ....
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Then, for n = 0, we have

b0 = −
2

0
= 0.

Furthermore, we will see many examples in this book.

3.4 Double natures of the zero point z = 0

Any line on the complex plane arrives at the point at infinity
and the point at infinity is represented by zero. That is, a line,
indeed, contains the origin; the true line should be considered
as the sum of a usual line and the origin. We can say that it
is a compactification of the line and the compacted point is the
point at infinity, however, it is represented by z = 0. Later, we
will see this property by analytic geometry and the division by
zero calculus in many situations.

However, for the general line equation

ax+ by + c = 0,

by using the polar coordinates x = r cos θ, y = r sin θ, we have

r =
−c

a cos θ + b sin θ
.

When a cos θ + b sin θ = 0, by the division by zero, we have
r = 0; that is, we can consider that the line contains the origin.
We can consider so, in the natural sense. We can define so as
a line with the compactification and the representation of the
point at infinity - the ideal point.

For the envelop of the lines represented by, for constants m
and a fixed constant p > 0,

y = mx+
p

m
, (3.4)
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we have the function, by using an elementary ordinary differen-
tial equation,

y2 = 4px. (3.5)

The origin of this parabolic function is excluded from the en-
velop of the linear functions, because the linear equations do
not contain the y axis as the tangential line of the parabolic
function. Now recall that, by the division by zero, as the linear
equation for m = 0, we have the function y = 0, the x axis.

– This function may be considered as a function with zero
gradient and passing the point at infinity; however, the point
at infinity is represented by 0, the origin; that is, the line may
be considered as the x axis. Furthermore, then we can consider
the x axis as a tangential line of the parabolic function, because
they are gradient zero at the point at infinity. –

Furthermore, we can say later that the x axis y = 0 and the
parabolic function have the zero gradient at the origin; that
is, in the reasonable sense the x axis is a tangential line of the
parabolic function.

Indeed, we will see the surprising property that the gradient
of the parabolic function at the origin is zero.

Anyhow, by the division by zero, the envelop of the linear
functions may be considered as the whole parabolic function
containing the origin.

When we consider the limiting of the linear equations as
m → 0, we will think that the limit function is a parallel line
to the x axis through the point at infinity. Since the point at
infinity is represented by zero, it will become the x axis.

Meanwhile, when we consider the limiting function as m→
∞, we have the y axis x = 0 and this function is a native
tangential line of the parabolic function. From these two tan-
gential lines, we see that the origin has double natures; one
is the continuous tangential line x = 0 and the second is the
discontinuous tangential line y = 0.

In addition, note that the tangential point of (3.5) for the

47



line (3.4) is given by (
p

m
,
2p

m

)
and it is (0, 0) for m = 0.

We can see that the point at infinity is reflected to the origin;
and so, the origin has the double natures; one is the native origin
and another is the reflected one of the point at infinity.

3.5 Puha’s horn torus model
V. V. Puha discovered the mapping of the extended complex
plane to a beautiful horn torus at (2018.6.4.7:22) and its inverse
at (2018.6.18.22:18).

Incidentally, independently of the division by zero, Wolfgang
W. Däumler has various special great ideas on horn torus as we
see from his site:

Horn Torus & Physics (https://www.horntorus.com/) Ge-
ometry Of Everything, intellectual game to reveal engrams of
dimensional thinking and proposal for a different approach to
physical questions ...

Indeed, W. W. Däumler was presumably the first (1996)
who came to the idea of the possibility of a mapping of ex-
tended complex plane onto the horn torus. He expressed this
idea on his private website (http://www.dorntorus.de). He was
also, apparently, the first to point out that zero and infinity are
represented by one and the same point on the horn torus model
of extended complex plane.

We will consider the three circles stated by

ξ2 +

(
ζ − 1

2

)2

=

(
1

2

)2

,

(
ξ − 1

4

)2

+

(
ζ − 1

2

)2

=

(
1

4

)2

, (3.6)
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and (
ξ +

1

4

)2

+

(
ζ − 1

2

)2

=

(
1

4

)2

.

By rotation on the space (ξ, η, ζ) on the (x, y) plane as in ξ =
x, η = y around ζ axis, we will consider the sphere with its 1/2
radius as the Riemann sphere and the horn torus made in the
sphere.

The mapping from (x, y) plane to the horn torus is given by

ξ =
2x
√
x2 + y2

(x2 + y2 + 1)2
,

η =
2y
√
x2 + y2

(x2 + y2 + 1)2
,

and
ζ =

(x2 + y2 − 1)
√
x2 + y2

(x2 + y2 + 1)2
+

1

2
.

This Puha mapping has a simple and beautiful geometrical
correspondence. At first for the plane we consider the stereo-
graphic mapping to the Riemann sphere and next, we consider
the common point of the line connecting the point and the cen-
ter (0, 0, 1/2) and the horn torus. This is the desired point on
the horn torus for the point on the plane.

Indeed, we denote tentatively a point with (ξ1, η1, ζ1) on the
horn torus. Then, we have, from the relation between a point
(ξ, η, ζ) on the Riemann sphere and the correspondent point
(ξ1, η1, ζ1) on the horn torus

ξ1 = ξ
ζ1 − 1/2

ζ − 1/2
, η1 = η

ζ1 − 1/2

ζ − 1/2
.

We set √
ξ2 + η2 = t, ζ1 −

1

2
= n, ζ − 1

2
= m.
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Then, since the point (ξ1, η1, ζ1) is on the horn torus, from the
identity

n2 +

(
n
t

m
− 1

4

)2

=
1

16
,

we obtain the identity

n =
mt

2(m2 + t2)
.

Therefore, we obtain

ξ1 =
ξ

2

√
ξ2 + η2

(ζ − 1/2)2 + ξ2 + η2
,

η1 =
η

2

√
ξ2 + η2

(ζ − 1/2)2 + ξ2 + η2

and
ζ1 =

1

2

(ζ − 1/2)
√
ξ2 + η2

(ζ − 1/2)2 + ξ2 + η2
+

1

2
.

Hence, in terms of (x, y), we have the desired results.

The inversion is given by

x = ξ

(
ξ2 + η2 +

(
ζ − 1

2

)2

− ζ + 1

2

)(−1/2)

(3.7)

and

y = η

(
ξ2 + η2 +

(
ζ − 1

2

)2

− ζ + 1

2

)(−1/2)

. (3.8)

In these formulas, we can see the division by zero

1

0
= 0,

naturally that shows the mapping of the point (0, 0, 1/2) to
(0, 0).
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At first, the model shows the strong symmetry of the do-
mains {|z| < 1} and {|z| > 1} and they correspond to the lower
part and the upper part of the horn torus, respectively. The
unit circle {|z| = 1} corresponds to the circle

ξ2 + η2 =

(
1

2

)2

, ζ =
1

2

in one to one way. Of course, the origin and the point at infinity
are the same point and correspond to (0, 0, 1/2). Furthermore,
the inversion relation

z ←→ 1

z

with respect to the unit circle {|z| = 1} corresponds to the
relation

(ξ, η, ζ)←→ (ξ, η, 1− ζ)

and similarly,
z ←→ −z

corresponds to the relation

(ξ, η, ζ)←→ (−ξ,−η, ζ)

and
z ←→ −1

z

corresponds to the relation

(ξ, η, ζ)←→ (−ξ,−η, 1− ζ)

(H.G.W. Begehr: 2018.6.18.19:20).
However, we can see directly the important negative prop-

erties that the mapping is isogonal (equiangular) and infinitely
small circles correspond to infinitely small circles are not valid,
as in analytic functions. Of course, circles to circles mapping
property is, in general, not valid as in the case of the stereo-
graphic projection mapping.
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We note that only zero and numbers a of the form |a| = 1
have the property : |a|b = |a|, b 6= 0. Here, note that we can
also consider 0b = 0 ([38]). The symmetry of the horn torus
model agrees perfectly with this fact. Only zero and numbers a
of the form |a| = 1 correspond to points on the plane described
by equation ζ − 1/2 = 0. Only zero and numbers a of the form
|a| = 1 correspond to points whose tangent lines to the surface
of the horn torus are parallel to the axis ζ.

3.6 Däumler’s horn torus model
W. W. Däumler discovered a surprising conformal mapping
from the extended complex plane to the horn torus model
(2018.8.18.09):

https://www.horntorus.com/manifolds/conformal.html
and
https://www.horntorus.com/manifolds/solution.html

Our situation is invariant by rotation around ζ axis, and so
we shall consider the problem on the ξ, ζ plane.

Let N(0, 0, 1) be the north pole. Let P ′(ξ, η, ζ) denote a
point on the Riemann sphere and let z = x+ iy be the common
point with the line NP ′ and ζ = 0 plane (: z = x+ iy); that is
P ′ is the stereographic projection map of the point z = x + iy
onto the unit sphere.

Let M(1/4, 0, 1/2) be the center of the circle (3.6). Let P ′′

be the common point of the line SP ′(S = S(0, 0, 1/2)) and the
circle (3.6).

Let Q′ be (0, 0, ζ) that is the line Q′P ′ is parallel to the x
axis. Let Q′′ and M ′′ be the common points with the ζ axis and
ξ = 1/4 with the parallel line to the x axis through the point
P ′′, respectively.

Further, we set α = ∠OSP ′ = ∠P ′′IS = (1/2)∠P ′′MS (I
:= I(1/2,0,1/2)). We set P for the point on the horn torus such
that ϕ = ∠SMP and Q be the point on the ζ axis such that
the line QP is parallel to the x axis.
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Then, we have:
P ′Q′ =

1

2
sinα,

P ′′M ′′ =
1

4
| cos(2α)|,

P ′′Q′′ =
1

4
(1− cos(2α)),

the length of latitude through P ′ is

2πP ′Q′ = π sinα,

and the length of latitude through P ′′

2πP ′′Q′′ =
π

2
(1− cos(2α)) = π sin2 α.

Similarly, we have

2πQP =
π

2
(1− cosϕ).

In order to become the conformal mapping from the point
P ′ to the point P , we have the identity

dα : dϕ = sinα : 1− cosϕ;

that is we have the differential equation

dα

sinα
=

dϕ

1− cosϕ
.

Note here that the radius of the circle (3.6) is half of the stere-
ographic projection mapping circle (the Riemann sphere). We
solve this differential equation as, with an integral constant C

log | tan α
2
|= − cot

ϕ

2
+ C.

For this derivation of the differential equation, see the detail
comments in the site : conformal mapping sphere ↔ horn
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torus with beautiful figures and many informations, by W. W.
Däumler. In order to check his idea, we will give a complete
proof analytically in the last part of this session.

Using the correspondence

α = 0↔ ϕ = 0,

or
α = π/2↔ ϕ = π

or
α = π ↔ ϕ = 2π,

we have C = 0. Note that tan(π/2) = 0, cot(π/2) = 0 and
log 0 = 0 ([38]). Note also that the function y = ex takes two
values 1 and 0 at x = 0. We will see them in Sections 5, 8 and
11.

Therefore,

ϕ = 2 cot−1(− log | tan(α/2) |) (3.9)

or
α = 2 tan−1(e(− cot(ϕ/2))). (3.10)

Next, note that
tan

α

2
= |z|

and
α = 2 tan−1 |z|. (3.11)

We thus have

ϕ = 2 cot−1(− log |z|) (3.12)

and the inverse is
|z| = e− cot(ϕ/2). (3.13)

We thus obtain the complicated conformal mapping for the
z plane to the horn torus by (3.12) and (3.10). The inverse
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conformal mapping for the horn torus to the complex z plane is
given by (3.9) and (3.13).

For the integral constant C, Däumler considers the general
constant C and stated that:

I don’t recognize a big problem with constant C.
What are the crucial points? As I stated, all map-
pings from sphere to horn torus and inverse with any
real C are conformal, but only the mappings with
C = 0 are bijective. Respectively with

α = 2 tan−1(p · |z|)

and
|z| = tan(α/2)

p
,

all mappings from complex plane to sphere and in-
verse with real p > 0 are conformal, but bijective
only when p = 1, what is the normal Riemannian
stereographic projection. Main thing is to have at
least one solution (C = 0) in this topic, and we can
keep other constants, C not equal 0 and p not equal
1, for special cases in different context.

For this very interesting topics, see his site.
We can represent the direct Däumler mapping from the z

plane onto the horn torus as follows (V. V. Puha:
2018.8.28.22:31):

With (3.12),

ξ =
x · (1/2)(sin(ϕ/2))2√

x2 + y2
, (3.14)

η =
y · (1/2)(sin(ϕ/2))2√

x2 + y2
, (3.15)
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and
ζ = −1

4
sinϕ+

1

2
. (3.16)

Indeed, at first, we have

SP := L = 2 · 1
4
sin

ϕ

2
=

1

2
sin

ϕ

2
, (3.17)

√
ξ2 + η2 = L cos

(
π

2
− ϕ

2

)
= L sin

ϕ

2
,

and √
ξ2 + η2 =

1

2
sin2

ϕ

2
.

From the simple relations

ξ =
x
√
ξ2 + η2√
x2 + y2

, η =
y
√
ξ2 + η2√
x2 + y2

, (3.18)

and
ζ = −L sin

(
π

2
− ϕ

2

)
+

1

2
,

we have the desired representations.
We will give the inversion formula of the Däumler mapping.

From (3.18) we have

x =
ξ
√
x2 + y2√
ξ2 + η2

, y =
η
√
x2 + y2√
ξ2 + η2

. (3.19)

Hence, it is enough to represent
√
x2 + y2 in terms of ξ, η, ζ on

the horn torus. From (3.13), (3.17) and

T =

√
ξ2 + η2 +

(
ζ − 1

2

)2

,

we have the inversion formula from the horn torus to the x, y
plane.
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x =
ξ√

ξ2 + η2
exp±


√
ζ − (ξ2 + η2 + ζ2)√
ξ2 + η2 +

(
ζ − 1

2

)2
 (3.20)

and

y =
η√

ξ2 + η2
exp±


√
ζ − (ξ2 + η2 + ζ2)√
ξ2 + η2 +

(
ζ − 1

2

)2
 . (3.21)

Properties of the Däumler conformal mapping

The Däumler conformal mapping stated is very complicated,
however, has very beautiful properties. We will see its elemen-
tary properties.

The circle |z| = r is mapped to the circle:

ξ2 + η2 =
1

4

{
sin

ϕ

2

}4

, ζ = −1

4
sinϕ+

1

2

with
ϕ

2
= cot−1(− log r).

In particular, note that the unit circle r = 1 is mapped to the
circle

ξ2 + η2 =

(
1

2

)2

, ζ =
1

2
.

Here, note also that ϕ = π, by using the division by zero calcu-
lus, from

1

tan(ϕ/2)
= 0.

We have the relation
η

ξ
=
y

x
,
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but for y = mx

ζ = −1

4
sin

{
2 cot−1

(
−1

2
(log x2 + log(1 +m2))

)}
.

Furthermore, the inversion relation

z ←→ 1

z

with respect to the unit circle {|z| = 1} corresponds to the
relation

(ξ, η, ζ)←→ (ξ, η, 1− ζ)

and similarly,
z ←→ −z

corresponds to the relation

(ξ, η, ζ)←→ (−ξ,−η, ζ)

and
z ←→ −1

z

corresponds to the relation

(ξ, η, ζ)←→ (−ξ,−η, 1− ζ).

Of course, the conformal mapping of Däumler is important,
however, its mapping is very involved and the difference with
the Puha mapping is just the shift on the circle of longitude
and the Puha mapping is very simple. Furthermore the Puha
mapping is clear in the geometrical correspondence. Therefore,
we will be able to enjoy the Puha mapping for the horn torus
model.

Proof of the Däumler conformal mapping
In order to confirm the Däumler comformal mapping and at

the same time, in order to see its analytical structure, we will
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examine it. In this subsection, for simplicity we use L,N with
L = log(x2 + y2) and N = L/(4 + L2).

First, we calculate the first order derivatives.

∂ξ

∂x
=

8y2 − 8x2L+ 2y2L2

(x2 + y2)3/2(4 + L2)2
,

∂ξ

∂y
=
∂η

∂x
=

−2xy(2 + L)2

(x2 + y2)3/2(4 + L2)2
,

∂η

∂y
=

2(4x2 − 4y2L+ x2L2)

(x2 + y2)3/2(4 + L2)2
,

∂ζ

∂x
=

−2x(−4 + L2)

(x2 + y2)(4 + L2)2

and
∂ζ

∂y
=

−2y(−4 + L2)

(x2 + y2)(4 + L2)2
.

Next, we wish to have the relation between

(dσ)2 = (dξ)2 + (dη)2 + (dζ)2

and
(ds)2 = (dx)2 + (dy)2.

From

dξ =
2(−xydy(2 + L)2 + dx(4y2 − 4x2L+ y2L2))

(x2 + y2)3/2(4 + L2)2
,

dη =
2(−xydx(2 + L)2 + dy(4x2 − 4y2L+ x2L2))

(x2 + y2)3/2(4 + L2)2
,

and

dζ =
−2(xdx+ ydy)(−4 + L2)

(x2 + y2)(4 + L2)2
,
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we obtain the beautiful identity

(dσ)2 =
4(ds)2

(x2 + y2)(4 + L2)2
. (3.22)

The next and final crucial point is the relation of

dx

ds
,
dy

ds

and
dξ

dσ
,
dη

dσ
,
dζ

dσ
.

This may be done directly by division by dσ in (3.22). In-
deed, we have:

dξ

dσ
=
dx(y2 − 4x2N) + dy(−xy − 4xyN)

ds(x2 + y2)
, (3.23)

dη

dσ
=
dx(−xy − 4xyN) + dy(x2 − 4y2N))

ds(x2 + y2)
, (3.24)

and
dζ

dσ
=
−xdx(−4 + L2)− ydy(−4 + L2)

ds
√
x2 + y2(4 + L2)

. (3.25)

On a point P0(ξ0, η0, ζ0) on the horn torus we consider two
smooth curves passing the point

fj(ξ, η, ζ) = 0, j = 1, 2.

At the point P0, we denote the values of dξ
dσ ,

dη
dσ ,

dζ
dσ by λj , µj , νj ,

respectively. Then, for the angle Φ made by the curves at the
point P0 we have

cosΦ = λ1λ2 + µ1µ2 + ν1ν2. (3.26)

The corresponding relations on the x, y plane are as follows:
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For the corresponding curves on the x, y plane

gj(x, y) = 0, j = 1, 2,

at the corresponding point Q0(x0, y0), we denote the values of
dx
ds ,

dy
ds by αj , βj , respectively. Then, for the angle ϕ of the curves

at the point Q0(x0, y0) we have

cosϕ = α1α2 + β1β2. (3.27)

We wish to prove that (3.26) = (3.27), by formal calculation.
Note that from (3.23), we have for (x, y) = (x0, y0), here, for

simplicity we shall use (x, y) at Q0

λj =
αj(y

2 − 4x2N) + βj(−xy − 4xyN)

x2 + y2
.

Similarly, from (3.24),

µj =
αj(−xy − 4xyN) + βj(x

2 − 4y2N)

x2 + y2
,

and from (3.25),

νj =
−xαj(−4 + L2)− yβj(−4 + L2)√

x2 + y2(4 + L2)
.

When we insert these in the right side of (3.26), we obtain
the right side of (3.27). In this subsection, for these formal
calculations, we used MATHEMATICA.

The sources of the last two subsections on the horn torus
models are given by [24]. Professor Tsutomu Matsuura kindly
checked the calculations by MATHEMATICA in this subsec-
tion independently of Okumura and gave numerical experiments
with computer graphics that show the Däumler conformal map-
ping. Of course, Puha also gave such numerical experiments
with beautiful figures.
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3.7 Absolute function theory
We will discuss on Däumler’s horn torus model from some fun-
damental viewpoints.

First of all, note that in the Puha mapping and the Däumler
mapping, and even in the classical stereographic mapping, we
find the division by zero 1/0 = 0/0 = 0.

What is the number system?

What are the numbers? What is the number system? For
these fundamental questions, we can say that the numbers are
complex numbers C and the number system is given by the
Yamada field with the simple structure as a field containing
the division by zero.

Nowadays, we have still many opinions on these fundamental
questions, however, this subsection excludes all those opinions
as in the above.

What is the natural coordinates?

We represented the complex numbers C by the complex
plane or by the points on the Riemann sphere. On the com-
plex plane, the point at infinity is the ideal point and for the
Riemann sphere representation, we have to accept the strong
discontinuity. From these reasons, the numbers and the num-
bers system should be represented by the Däumler’s horn torus
model that is conformally equaivalent to the extended complex
plane.

What is a function?, and what is the graph of a
function?

A function may be considered as a mapping from a set of
numbers into a set of numbers.

The numbers are represented by Däumler’s horn torus model
and so, we can consider that a function, in particular, an ana-
lytic function can be considered as a mapping from Däumler’s
horn torus model into Däumler’s horn torus model.
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Absolute function theory

Following the above considerings, for analytic functions when
we consider them as the mappings from Däumler’s horn torus
model into Däumler’s horn torus model we would like to say
that it is an absolute function theory.

For the classical theory of analytic functions, discontinuity
of functions at singular points will be the serious problems and
the theory will be quite different from the new mathematics,
when we consider the functions on the Däumler’s horn torus
model. Even for analytic function theory on bounded domains,
when we consider their images on Däumler’s horn torus model,
the results will be very interesting.

New mathematics and future mathematicians

The structure of Däumler’s horn torus model is very involved
and so, we will need some computer systems like MATHEMAT-
ICA and Isabelle/HOL system for our research activity. Indeed,
for the analytical proof of the conformal mapping of Däumler,
we had to use MATHEMATICA, already. Here, we will be able
see some future of mathematicans.

For the properties of horn torus with physical applications,
see [23].

See also the site of Däumler for some deep ideas:

https://www.horntorus.com/rotations.html
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4 MIRROR IMAGE WITH RESPECT
TO A CIRCLE

For simplicity, we will consider the unit circle |z| = 1 on the
complex z = x+ iy plane. Then, we have the reflection formula

z∗ =
1

z
(4.1)

for any point z, as is well-known ([2]). For the reflection point
z∗, there is no problem for the points z 6= 0,∞. As the clas-
sical result, the reflection of zero is the point at infinity and
conversely, for the point at infinity we have the corresponding
point as the zero point. The reflection is a one to one correspon-
dence and onto mapping between the inside and the outside of
the unit circle, by considering the point at infinity.

Are these correspondences, however, suitable? Does there
exist the point at ∞, really? Is the point at infinity corre-
sponding to the zero point, by the reflection? Is the point at
∞ reasonable from the practical point of view? Indeed, where
can we find the point at infinity? Of course, we know and see
pleasantly the point at infinity on the Riemann sphere, how-
ever, on the complex z-plane it seems that we can not find the
corresponding point. When we approach the origin on a radial
line on the complex z plane, it seems that the corresponding re-
flection points approach the point at infinity with the direction
(of the radial line).

With the concept of the division by zero, there is no the point
at infinity ∞ as numbers. For any point z such that |z| > 1,
there exists the unique point z∗ by (4.1). Meanwhile, for any
point z such that |z| < 1 except z = 0, there exits the unique
point z∗ by (4.1). Here, note that for z = 0, by the division by
zero, z∗ = 0. Furthermore, we can see that

lim
z→0

z∗ =∞, (4.2)

however, for z = 0 itself, by the division by zero, we have z∗ = 0.
This will mean a strong discontinuity of the functions W = 1

z
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and (4.1) at the origin z = 0; that is a typical property of the
division by zero. This strong discontinuity may be looked in the
above reflection property, physically.

The result is a surprising one in a sense; indeed, by consider-
ing the geometrical correspondence of the mirror image, we will
consider the center corresponds to the point at infinity that is
represented by the origin z = 0. This will show that the mirror
image is not followed by this concept; the correspondence seems
to come from the concept of one-to-one and onto mapping.

Should we exclude the point at infinity, from num-
bers? We were able to look the strong discontinuity of the
division by zero in the reflection with respect to circles, physi-
cally (geometrical optics). The division by zero gives a one to
one and onto mapping of the reflection (4.1) from the whole
complex plane onto the whole complex plane.

The infinity ∞ may be considered as in (4.2) as the
usual sense of limits, however, the infinity∞ is not a definite
number.

We consider a circle on the complex z plane with its center
z0 and its radius r. Then, the mirror image relation p and q
with respect to the circle is given by

p = z0 +
r2

q − z0
.

For q = z0, we have, by the division by zero,

p = z0,

For a circle

Azz + βz + βz +D = 0; A > 0, D : real number,

or (
z +

β

A

)(
z +

β

A

)
=
|β|2 −AD

A2
,
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the points z and z1 are in the relation of the mirror images with
respect to the circle if and only if

Az1z + βz1 + βz +D = 0,

or
z1 = −

βz +D

Az + β

= − β
A
− 1

A

(
D − |β|

2

A

)
1

z −
(
− β

A

) .
The center −β/A corresponds to the center itself, as we see from
the division by zero.

On the x, y plane, we shall consider the inversion relation
with respect to the circle with its radius R and with its center
at the origin:

x′ =
xR2

x2 + y2
, y′ =

yR2

x2 + y2
.

Then, the line
ax+ by + c = 0

is transformed to the line

R2(ax′ + by′) + c((x′)2 + (y′)2) = 0.

In particular, for c = 0, the line ax + by = 0 is transformed to
the line ax′ + by′ = 0. This correspondence is one-to-one and
onto, and so the origin (0, 0) has to correspond to the origin
(0, 0).

Furthermore, we will see many examples in this book.

For the elliptic curve

x2

a2
+
y2

b2
= 1, a, b > 0
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and for the similar correspondences

x′ =
a2b2x

b2x2 + a2y2
, y′ =

a2b2y2

b2x2 + a2y2
,

the origin corresponds to itself.
The pole (x1, y1) of the line

ax+ by + c = 0

with respect to a circle with its radius R and with its center
(x0, y0) is given by

x1 = x0 −
aR2

ax0 + by0 + c

and
y1 = y0 −

bR2

ax0 + by0 + c
.

If ax0 + by0 + c = 0, then we have (x1, y1) = (x0, y0).
Furthermore, for various higher dimensional cases the cor-

responding results are similar.
Anyhow, by the horn torus models of Puha and Däumler,

we can see the whole situation of the reflection mappings or
inversions clearly, because we can see the zero point and the
point at infinity as the same one point.

67



5 DIVISION BY ZERO CALCULUS
As the number system containing the division by zero, the Ya-
mada field structure is completed.

However for applications of the division by zero to func-
tions, we will need the concept of division by zero calculus for
the sake of unique determination of the results and for other
deep reasons. See [41].

For example, for the typical linear mapping

W =
z − i
z + i

,

it gives a conformal mapping on {C \ {−i}} onto {C \ {1}} in
one to one and from

W = 1 +
−2i

z − (−i)
,

we see that −i corresponds to 1 and so the function maps the
whole {C} onto {C} in one to one.

Meanwhile, note that for

W = (z − i) · 1

z + i
,

when we enter z = −i in the way

[(z − i)]z=−i ·
[

1

z + i

∣∣∣∣
z=−i

= (−2i) · 0 = 0,

we have the different value.
In many cases, the above two results will have practical

meanings and so, we will need to consider many ways for the
application of the division by zero to functions and we will need
to check the results obtained, in some practical viewpoints. We
will refer to this delicate problem with many examples.

The short version of this section was given by [72] in the Pro-
ceedings of the International Conference. See also [3]. However,
the contents are mainly restricted to the differential equations
for the conference topics.
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5.1 Introduction of the division by zero calculus
We will introduce the division by zero calculus. For any Laurent
expansion around z = a,

f(z) =

−1∑
n=−∞

Cn(z − a)n + C0 +

∞∑
n=1

Cn(z − a)n (5.1)

we will define
f(a) = C0. (5.2)

For the correspondence (5.2) for the function f(z), we will
call it the division by zero calculus. By considering deriva-
tives in (5.1), we can define any order derivatives of the func-
tion f at the singular point a; that is,

f (n)(a) = n!Cn.

Apart from the motivation, we define the division
by zero calculus by (5.2). With this assumption, we can
obtain many new results and new concepts. However, for this
assumption we have to check the results obtained whether they
are reasonable or not. By this idea, we can avoid any logical
problem. – In this viewpoint, the division by zero calculus
may be considered as an axiom.

In addition, we will refer to the naturality of the division by
zero calculus.

Recall the Cauchy integral formula for an analytic function
f(z); for an analytic function f(z) around z = a and for a
smooth simple Jordan closed curve γ enclosing one time the
point a, we have

f(a) =
1

2πi

∫
γ

f(z)

z − a
dz.

Even when the function f(z) has any isolated singularity at the
point a, we assume that this formula is valid as the division by
zero calculus.
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We define the value of the function f(z) at the singular point
z = a with the above Cauchy integral.

Axiom for the division by zero calculus

Of course, for any axiom, we wish to some simple good rep-
resentation, because we have several equivalent representations,
in general. We consider the axiom of the division by zero cal-
culus by its definition. However, how will be the following rep-
resentation?:

Axiom of the division by zero calculus: For any nega-
tive integer n and for the function, for any fixed a

fn(z) = (z − a)n

we assume that
fn(a) = 0.

Of course, if the equation fn(z) = (z−a)n = 0 has a solution,
then the solution has to be a. Indeed, we considered to solve an
equation by extending our concept in our mathematics.

Elementary properties of division by zero calculus

For any analytic functions f(z), g(z) on {ϵ < |z − a| < R},
In general,

(fg)(a) 6= f(a)g(a),(
1

f

)
(a) 6= 1

f(a)
,

(f(g))(a) 6= f(b)g(a), b = g(a).

Here, of course, we assume that the domain of f is containing
the point b = g(a) and f is analytic around b = g(a).

Meanwhile, we obtain:

(αf + βg)(a) = αf(a) + βg(a),
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(αf + βg)′(a) = αf ′(a) + βg′(a),

(fg)′(a) = (f ′g)(a) + (fg′)(a),

and (
g

f

)′
(a) =

g′f

f2
(a)− gf ′

f2
(a).

Simple and convenient facts:

For an analytic function f(z) on Ra = {z; 0 < |z| < a}, if
f(−z) = −f(z) on Ra, then

f(0) = 0

and if f(−z) = f(z) on Ra, then

f ′(0) = 0.

We will give typical and various examples.

For the typical function (sinx)/x, we have

sinx

x
(0) =

sin 0

0
=

0

0
= 0,

however, by the division by zero calculus, we have, for the func-
tion (sinx)/x

sinx

x
(0) = 1,

that is more reasonable in analysis.
However, for functions we see that the results by the division

by zero calculus have not always practical senses and so, for
the results by the division by zero we should check the
results, case by case.

This does not imply any incompleteness of mathematics,
that is why, for example, for the product f(z)g(z) of two an-
alytic functions f(z) and g(z), for the value of f(z)g(z) at a
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singular point z = a, we can consider its value in the both
senses; that is,

f(z)g(z)|z=a

and
f(z)|z=a · g(z)|z=a.

Those values are, in general, different, in the division by zero
calculus.

For example, for the simple example for the line equation on
the x, y plane

ax+ by + c = 0

we have, formally
x+

by + c

a
= 0,

and so, by the division by zero, we have, for a = 0, the reason-
able result

x = 0.

This case may be considered as the case of a→∞.
For the equation y = mx, from

y

m
= x,

we have, by the division by zero, x = 0 for m = 0. This gives
the case m = ±∞ of the gradient of the line. – This will mean
that the equation y = mx represents the general line through
the origin containing the line x = 0 in this sense. – This method
was applied in many cases, for example see also [61, 50].

However, from
ax+ by

c
+ 1 = 0,

for c = 0, we have the contradiction, by the division by zero

1 = 0.
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For this case, we can consider that

ax+ by

c
+
c

c
= 0,

that is always valid. In this sense, we can divide an equa-
tion by zero.

In the formula(
−1

a

√
1− 2ax+ a2

)′
=

1√
1− 2ax+ a2

,

by the division by zero calculus, we obtain directly, for a = 0

(x)′ = 1.

From the identity

π2

sin2(πz)
=

+∞∑
n=−∞

1

(z − n)2
,

by using the expansion

π2
(

1

πz
+
πz

6
+ · · ·

)2

= π2
(

1

π2z2
+

1

3
+ · · ·

)
,

we have the identity, from the division by zero calculus, imme-
diately, for z = 0

ζ(2) =
π2

6
.

Meanwhile, from the expansions

cot z =
1

z
+ 2z

∞∑
k=1

1

z − k2π2
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([1], page 75, 4.3.70) and

cot z =
1

z
− 1

3
z − 1

45
z2 − · · ·

([1], page 75, 4.3.91), by the division by zero calculus, we have
the same result.

For the case

g(η) =
1

cosh2 η
− tanh η

η3
, (η > 0)

at η = 0, we have,
−1 + 1

3
=
−2
3
,

separately (see, S. Watanabe ([95]), page 9, (2.4)).
Meanwhile, note that for the function f(z) = z+ 1

z , f(0) = 0,
however, for the function

f(z)2 = z2 + 2 +
1

z2
,

we have f2(0) = 2. Of course,

f(0) · f(0) = {f(0)}2 = 0.

In the formula

xa+1

a+ 1

(
log x− 1

x+ 1

)
,

for a = −1, we have, by the division by zero calculus,

1

2
(log x) .

For {π < arg z < π} and for any complex number a, we
obtain the important identity, by the division by zero calculus

za

a
|a=0 = log z.
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For the applications, see, for example, [1],

4.4.65, 4.4.67, 4.4.69, 4.4.71, 4.6.52, 4.6.54, 4.6.56, 4.6.58.

For an analytic function f(z) around z = a such that

f(z) = f ′(a)(z − a) + 1

2
f ′′(a)(z − a)2 + · · ·, f ′(a) 6= 0,

we obtain
1

f(z)
|z=a =

−f ′′(a)
2f ′(a)2

.

Furthermore, for an analytic function g(z) around z = a, we
have

g(z)

f(z)
|z=a =

g′(a)

f ′(a)
− g(a)f ′′(a)

2f ′(a)2
.

For example, for the integral formula∫
zn(log z)mdz =

zn+1

n+ 1
(log z)m

− m

n+ 1

∫
zn(log z)m−1dz (n 6= −1)

([1], page 69: 4.1.51), we can obtain the right formula, by the
division by zero calculus, immediately∫

1

z
(log z)mdz = (log z)m+1 −m

∫
1

z
(log z)mdz.

In this case, this is missing there.

In the integral, for ac− b2 > 0

I =

∫
dx

ax2 + bx+ c
=

∫
adx

(ax+ b)2 + (ac− b2)

=
1√

ac− b2
arctan

ax+ b√
ac− b2

,
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for ξ =
√
ac− b2 = 0, from

I =
1

ξ
arctan

ax+ b

ξ

=
1

ξ

(
π

2
− ξ

ax+ b
+

1

3

(
ξ

ax+ b

)3

− ...

)
,

we have the right result, by the division by zero calculus

I = − 1

ax+ b
.

For the integral∫
dx

a+ bx2
=

√
1

ab
arctan

(√
b

a
x

)
+ C,

for a = 0, by the division by zero calculus, we have

1

b

∫
dx

x2
= −1

b

1

x
+ C.

Of course, for b = 0, we have

1

a

∫
dx =

1

a
x+ C.

Meanwhile, for the formula∫ ∞

0

cosx

x2 + a2
dx =

πe−a

2a
, (a > 0),

we obtain the identity∫ ∞

0

cosx

x2
dx = −π

2
.

However, we have to consider the integral in a generalized sense,
for example, in the distribution theory.
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For the general mean formula, for ak > 0,

M(t) =

(
1

n

n∑
k=1

atk

)(1/t)

,

for t = 0, we obtain the geometrical mean, by the division by
zero calculus,

M(0) = (a1a2a3 · · · an)
1
n .

From the definition of the division by zero calculus, directly,
we obtain, simply:

For the function

exp(ax)

f(a)
, f(a) = 0

if f(z) is analytic around z = 0 and f ′(a) = f ′′(a) = ... =
f (m)(a) = 0 and f (m+1)(a) 6= 0, by the division by zero calculus,
we obtain the identity

xm+1 exp(ax)

f (m+1)(a)
.

When f(D) is an (polynomial) ordinary differential operator
with D = d/dx and with constant coefficients, in the ordinary
differential equation

f(D)y = exp(ax),

if f ′(a) = f ′′(a) = ... = f (m)(a) = 0 and f (m+1)(a) 6= 0, then it
gives a special solution.

The result may be looked like a generalization of l’Hôpital’s
rule.

Furthermore, see many examples in [41].
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We defined the division by zero calculus for analytic func-
tions, because we used the Laurent expansion. For the case of
some smooth functions that are not analytical, the division by
zero calculus is delicate. However, by applying the method of
division by zero calculus by using the Taylor expansion for the
Laurent expansion, we can consider the division by zero calcu-
lus. However, its logical situation is unclear and there-
fore we should check the results obtained. By checking
the results obtained, we can enjoy the division by zero
calculus for some general functions for creating new re-
sults. See also [41].

For a smooth function f(x) of class Cn for n ≥ 1, from the
Taylor expansion around x = a, we have the expansion

f(x) =
n−1∑
k=0

f (k)(a)

k!
(x− a)k + f (n)(c)

n!
(x− a)n. (5.3)

a < c < x or a > c > x.

Then, we obtain, by the division by zero[
f(x)

(x− a)m

]
x=a

=

{
0 (m > n)
f (m)(a)

m! (m ≤ n).
(5.4)

Note that the division by zero calculus was defined by the value
of the function at the point a, not by limiting x→ a. Therefore,
the value f (n)(c)

n! in (5.4) is f (n)(a)
n! at the point a. The division by

zero calculus is defined for analytic functions at isolated singular
points by using the Laurent expansion, but for smooth functions
that are not analytic, we will be able to consider the division
by zero calculus by this sense, by using the Taylor expansion.

Note, in particular, that for a function f(x) of class C2

around x = a, by the division by zero,[
f(a+ h) + f(a− h)− 2f(a)

h2

]
h=0

= f ′′(a).
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For the function

f(x) = x sin
1

x
,

if f(0) = 0, then the function is continuous at x = 0, however,
it is not differentiable at the origin. By the division by zero
calculus, we have, automatically

f(0) = 1.

The function
f(x)

x

is not defined at x = 0, however, we have

f(x)

x
|x=0 = 0.

The function

g(x) = x2 sin
1

x

is defined at the point x = 0 as g(0) = 0 in the usual sense and
by the division by zero calculus. We have

g′(x) = 2x sin
1

x
− cos

1

x

and is not defined at x = 0. However, with the division by zero
calculus,

g′(0) = 2.

Note that if g(x) is analytic around x = 0

g(x)

x
|x=0 = g′(0) (= 1).

Meanwhile, we have an interesting formula whose proof is
simple:
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Theorem 5.1. Consider a family of absolutely continuous
functions fa (x) that is analytic in a ∈ R \ {a0} . Let ga (x) =
f ′a (x) and we assume that it is extensible to the point at a = a0
as an absolutely continuous function, then

fa0 (x) =

∫
ga0 (x) dx.

We will show examples:

1. Let fn(x) = (ax+b)n+1

a(n+1) where a ∈ R \ {0} and n + 1 is a
positive integer. Then gn(x) = (ax+ b)n and[
(ax+ b)n+1

a (n+ 1)

]
n=−1

=

∫
(ax+ b)−1 dx =

ln |ax+ b|
a

, a 6= 0;

by the same way we have[
(ax+ b)n+1

a (n+ 1)

]
a=0

=

∫
bndx = bnx.

2. Let f(x) = arctan(x/a)
a where a ∈ R \ {0} . In this case we

get gn(x) = 1
x2+a2

and consequently[
arctan (x/a)

a

]
a=0

=

∫
1

x2
dx = −1

x
.

3. Let f(x) = ax

log a , a > 0. Then, we obtain[
ax

log a

]
a=1

=

∫
dx = x.
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In this example, note that the function f(x) may not be
considered in the sense of the Laurent expansion in a.
However, by setting log a = A, we can obtain that:

eAx

A
|A=0 = x,

by the division by zero calculus. In the formula∫
axdx =

ax

log a
+ C,

for a = 1, the formula∫
1xdx =

1x

log 1
+ C

is not valid.
Meanwhile, we obtain that(

1

log x

)
x=1

= 0.

Indeed, we consider the function y = exp(1/x), x ∈ R and
its inverse function y = 1

log x . By the symmetric property
of two functions with respect to the function y = x, we
have the desired result.
Here, note that for the function 1

log x , we can not use the
Laurent expansion around x = 1, and therefore, the result
is not trivial.
In particular, note that the function W = exp(1/z) takes
the Picard’s exceptional value 1 at the origin z = 0,
by the division by zero calculus.
Meanwhile, for the identity

a− b
log a− log b

,
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for a = b, we should consider it in the following way. By
substituting log a = A and log b = B, from

expA− expB

A−B
,

by the division by zero calculus, we have the reasonable
result for A = B,

expA = a.

This example shows that the concept of division by H.
Michiwaki is not suitable for functions.
However, substitution methods are very delicate. For ex-
ample, for the function

w =
1 + it

1− it
,

for t = −i, by the division by zero calculus, we have a
good value w = −1. However, from the representation
z = eiα we have

1 + z

1− z
= i cot

α

2

and for α = 0 and z = 1, we have the contradiction −1 =
0. By considering the way

1 + eiα

1− eiα

and when we consider it by the division by zero calculus
in connection with α for α = 0, we have the right value 0.

Theorem 5.2 Consider a family of absolutely continuous
functions Fa (x) where a ∈ I ⊂ R, I is an open interval, and

fa(x) =

∫
Fa(x)dx.
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If a point a0 is a pole of order n of the analytic functions fa(x)
as functions in a and there exists an analytic function g : I → R
for any fixed x such that g (a, x) = (a− a0)n fa (x) then∫

Fa0(x)dx =
g(n) (a0, x)

n!
.

Proof. Using the Taylor theorem, we have, for any fixed x

g (a, x) =

∞∑
k=0

g(k) (a0, x)

k!
(a− a0)k ,

and by the division by zero calculus, we have∫
Fa0(x)dx = fa0(x) =

[
1

(a− a0)n
g (a, x)

]
a=a0

=
g(n) (a0, x)

n!
.

Theorems 5.1 and 5.2 were discovered by S. Pinelas (see
[72]).

We shall give examples.

1. For the integral∫
x(x2 + 1)adx =

(x2 + 1)a+1

2(a+ 1)
(a 6= −1),

we obtain, by the division by zero,∫
x(x2 + 1)−1dx =

log(x2 + 1)

2
.

2. For the integral∫
sin ax cosxdx =

sin ax sinx+ a cos ax cosx

1− a2
(a2 6= 1),

we obtain, by the division by zero, for the case a = 1∫
sinx cosxdx =

sin2 x

2
− 1

4
.
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3. For the integral∫
sinα−1 x cos(α+ 1)xdx =

1

α
sinα x cosαx,

we obtain, by the division by zero, for the case α = 0∫
sin−1 x cosxdx = log sinx.

4. For the integral∫
eax sin bxdx =

eax

a2 + b2
(a sin bx+ b cos bx) ,

for example, we can consider the case a = bi, by the di-
vision by zero calculus, and we can obtain the expected
good result.

We can obtain many and many such identities.
We will state the formal theorem whose proof is trivial:
Theorem 5.3 Consider an operator L that transforms func-

tions fz (t) on a set T with analytic parameter z of an isolated
singular point a into functions L [fz (t)] = Fz (s) on a set S.
Assume that for the Laurent expansions around a point a ∈ D,
a disc on the complex z plane with its center a, for any fixed t

fz (t) =

∞∑
n=−∞

fn(t)(z − a)n,

L [fz (t)] =
∞∑

n=−∞
L [fn (t)] (z − a)n.

Then we have
Fa (s) = L [fa (t)] .

We illustrate this result with examples:
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1. Let fλ (t) = sin(λt)
λ , where λ ∈ R\{0} . The Laplace trans-

form of fλ (t) is

L

[
sin (λt)

λ

]
=

1

s2 + λ2

for λ 6= 0. Then we have the identity

L [t] =
1

s2
.

2. Let fµ,λ (t) = eµt−eλt

µ−λ , where µ 6= λ. The Laplace transform
of fµ,λ (t) is

L

[
eµt − eλt

µ− λ

]
=

1

(s− µ) (s− λ)

for µ 6= λ. Then we have the formula

L
[
teλt

]
=

1

(s− λ)2
.

3. We consider the function

f(t) =


2t, if 0 ≤ t < 1;

3− t, if 1 ≤ t < 2;

0, if t ≥ 2,

whose Laplace transform is

F (s) =
1− 2e−s + e−3s

s2
(s > 0)

([86]). Then, by l’Hôpital’s rule, we can not derive the
value at s = 0 as 7/2, which is derived by the division by
zero calculus.
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4. As a typical example in A. Kaneko ([33], page 11) in the
theory of hyperfunction theory we see that for non-integers
λ, we have

xλ+ =

[
−(−z)λ

2i sinπλ

]
=

1

2i sinπλ
{(−x+ i0)λ − (−x− i0)λ}

where the left hand side is a Sato hyperfunction and the
middle term is the representative analytic function whose
meaning is given by the last term. For an integer n,
Kaneko derived that

xn+ =

[
− zn

2πi
log(−z)

]
,

where log is a principal value on {−π < arg z < +π}.
Kaneko stated there that by taking a finite part of the
Laurent expansion, the formula is derived. Indeed, we
have the expansion, around an integer n,

−(−z)λ

2i sinπλ

=
−zn

2πi

1

λ− n
− zn

2πi
log(−z)

−
(
log2(−z)zn

2πi · 2!
+

πzn

2i · 3!

)
(λ− n) + ...

([33], page 220).
By Theorem 5.3, however, we can derive this result from
the Laurent expansion, immediately.
Meanwhile, M. Morimoto derived this result by using the
Gamma function with the elementary means in [43], pages
60-62. See also [28].

5. For many generating functions we can obtain some inter-
esting identities. For example, we will consider the map-
ping

ζ ∈ C \ {0} → F (z, ζ) := exp
z

2

(
ζ − 1

ζ

)
.
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Then, from

F (z, ζ) =
+∞∑

n=−∞
Jn(z)ζ

n,

we obtain the formula

F (z, 0) = J0(z).

5.2 Difficulty in Maple for specialization problems

For the Fourier coefficients an

an =

∫
t cosnπtdt =

cosnπt

n2π2
+

t

nπ
cosnπt,

we obtain, by the division by zero calculus,

a0 =
t2

2
.

Similarly, for the Fourier coefficients an

an =

∫
t2 cosnπtdt =

2t

π2n2
cosnπt− 2

n3π3
sinnπt+

t2

nπ
sinnπt,

we obtain
a0 =

t3

3
.

For the Fourier coefficients ak of a function

akπk
3

4

= sin(πk) cos(πk) + 2k2π2 sin(πk) cos(πk) + 2π(cos(πk))2 − πk,

for k = 0, we obtain, by the division by zero calculus, immedi-
ately

a0 =
8

3
π2

(see [98], (3.4)).
We have many such examples.
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5.3 Reproducing kernels

We consider a reproducing kernel Hilbert space HK(E) on a set
E. Then, for the reproducing property that for any f ∈ HK(E)
and for any p ∈ E, (f(·),K(·.p))HK(E) = f(p), we obtain the
fundamental inequality

|f(p)| ≤ ‖f‖HK(E)

√
K(p, p).

We set the normalized reproducing kernel ea(p) at a point a
as norm 1 as

ea(p) =
K(p, a)√
K(a, a)

,

for the non-trivial case of K(a, a) 6= 0. If K(a, a) = 0, then
for any function f ∈ HK(E), we have f(a) = 0 and K(p, a) =
K(a, p) = 0 for any point p. So, we have the identity

0 =
0

0
.

The function

Ka,b(x, y) =
1

2ab
exp

(
− b
a
|x− y|

)
is the reprodiucing kernel for the space HKa,b

equipped with the
norm

‖f‖2HKa,b
=

∫
(a2f ′(x)2 + b2f(x)2)dx

([86], pages 15-16). If b = 0, then, by the division by zero
calculus

Ka,0(x, y) = −
1

2a2
|x− y|

and this is the reproducing kernel for the space HKa,0 equipped
with the norm

‖f‖2HKa,b
= a2

∫
(f ′(x)2dx.
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Meanwhile, if a = 0,K0,b(x, y) = 0, then it is the trivial repro-
ducing kernel for the zero function space.

We denote by O({0}) the set of all analytic functions defined
on a neighborhood of the origin.

Let {Cj}∞j=0 be a positive sequence such that

lim sup
j→∞

j
√
Cj <∞.

Set

R ≡

(
lim sup
j→∞

j
√
Cj

)−1

> 0

and define a kernel K by

K(z, u) ≡
∞∑
j=0

Cj z
j uj (|z|, |u| <

√
R).

Then we have

HK(∆(
√
R)) =

f ∈ O(∆(
√
R)) :

√√√√ ∞∑
j=0

|f (j)(0)|2
(j!)2Cj

<∞


and the norm is given by the formula

‖f‖HK(∆(
√
R)) =

√√√√ ∞∑
j=0

|f (j)(0)|2
(j!)2Cj

that is the reproducing kernel Hilbert space admitting the kernel
([86], page 35).

If some constant Cj0 is zero, then there is no problem, by
considering that in the above statement

|f (j0)(0)|2

(j!)2Cj0

= 0.
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5.4 Ratio

On the real x line, we fix two different points P1(x1) and P2(x2)
and we will consider the point, with a real number r

P (x; r) =
x1 + rx2
1 + r

.

If r = 1, then the point P (x; 1) is the mid point of two points
P1 and P2 and for r > 0, the point P is on the interval (x1, x2).
Meanwhile, for −1 < r < 0, the point P is on (−∞, x1) and
for r < −1, the point P is on (x2,+∞). Of course, for r = 0,
P = P1. We see that when r tends to +∞ and −∞, P tends to
the point P2. We see the pleasant fact that by the division by
zero calculus, P (x,−1) = P2. For this fact we see that for all
real numbers r correspond to all real line points.

In particular, we see that in many text books at the under-
graduate course the formula is stated as a parameter represen-
tation of the line through two pints P1 and P2. However, if we
do not consider the case r = −1 by the division by zero calcu-
lus, the classical statement is not right, because the point P2

can not be considered.
On this setting, we will consider another representation

P (x;m,n) =
mx2 − nx1
m− n

for the exterior division point P (x;m,n) in m : n for the points
P1 and P2. For m = n, we obtain, by the division by zero
calculus, P (x;m,m) = x2. Imagine that the point P (x;m,m) =
P2 and the point P2 seems to be the point P1. Such a strong
discontinuity happens for many cases. See also [41, 60].

For fixed two vectors OA = a and OB = b (a 6= b), we
consider two vectors OA′ = a′ = λa and OB′ = b′ = µb with
parameters λ and µ. Then, the common point x of the two lines
AB and A′B′ is represented by

x =
λ(1− µ)a+ µ(λ− 1)b

λ− µ
.
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For λ = µ, we should have x = 0, by the division by zero.
However, by the division by zero calculus, we have the curious
result

x = (1− µ)a+ µb.

By the division by zero, we can introduce the ratio for any
complex numbers a, b, c as

AC

CB
=
c− a
b− c

.

We will consider the Appollonius circle determined by the
equation

AP

PB
=
|z − a|
|b− z|

=
m

n
(5.5)

for fixed m,n ≥ 0. Then, we obtain the equation for the cirlce∣∣∣∣z − −n2a+m2b

m2 − n2

∣∣∣∣2 = m2n2

(m2 − n2)2
· |b− a|2. (5.6)

If m = n 6= 0, the circle is the line in (5.6). For |m|+ |n| 6= 0, if
m = 0, then z = a and if n = 0, then z = b. If m = n = 0 then
z is a or b.

The representation (5.5) is valid always, however, (5.6) is
not reasonable for m = n. The property of the division by zero
depends on representations of formulas.

On the real line, the points P (p), Q(1), R(r), S(−1) form a
harmonic range of points if and only if

p =
1

r
.

If r = 0, then we have p = 0 that is now the representation of
the point at infinity (H. Okumura: 2017.12.27.)

For two chords AB and CD of a fixed circle with a common
point P in the inside of the circle, we have the relation

PA

PC
=
PD

PB
.
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If C=P=B, then we have
PA

0
=
PD

0
= 0

and the formula is still valid.

5.5 Identities
For example, we have the identity

1

(x− a)(x− b)(x− c)
=

1

(c− b)(a− c)(x− a)

+
1

(b− c)(b− a)(x− b)
+

1

(c− a)(c− b)(x− c)
.

By the division by zero calculus, the first term in the right hand
side is zero for x = a, and

1

(b− c)(b− a)(a− b)
+

1

(c− a)(c− b)(a− c)
.

This result is the same as
1

(x− a)(x− b)(x− c)
(a) ,

by the divison by zero calculus.
For the identity

1

x(a+ x)2
=

1

a2x
− 1

a(a+ x)2
− 1

a2(a+ x)
,

we have the identity as 1
x3 for a = 0.

For the identity

f(z) = Πn
j=1(z − zj),

we have the identity[
f ′(z)

f(z)

]
z=z1

=
1

z1 − z2
+ ...+

1

z1 − zn
.
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For the identity
mx+ n

ax2 + 2bx+ c

=
m

2a

2ax+ 2b

ax2 + 2bx+ c
+
an− bm

a
− 1

ax2 + 2bx+ c
,

for a = 0, we have

mx+ n

2bx+ c
=

x(bx+ c)

(2bx+ c)2
+

2bnx+ nc+ bmx2

(2bx+ c)2
.

For the identity

In = (−1)nn! 1

(a2 + x2)(n+1)/2
sin(n+ 1)θ

=
(−1)nn!

2i

[
1

(x− ai)n+1
− 1

(x+ ai)n+1

]
, z = x+ iy = eiθ,

we have, for x = ai

[In]x=ai =
(−1)nn!
2n+2in

.

In the identity, for −π ≤ x ≤ π
∞∑
n=1

(−1)n−1 cosnx

n2 − a2
=

π cos ax

2a sin aπ
− 1

2a2
,

for a = 0, we have
∞∑
n=1

(−1)n−1 cosnx

n2
=

1

12
(π2 − 3x2).

In the identity, for 0 < x < 2π, |a| ≤ 1

∞∑
n=1

a2n−1 sin[(2n− 1)x]

2n− 1
=

1

2
tan−1 2 sinx

1− a2
,
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for a = 1, we have, for 0 < x < π,

∞∑
n=1

sin[(2n− 1)x]

2n− 1
=
π

4
.

For the identities, for 0 ≤ x ≤ 2π

∞∑
n=1

1

n2 + a2
cos(nx) =

π

2a sinh(aπ)
cosh[a(π − x]]− 1

2a2
,

and
∞∑
n=1

1

n2 − a2
cos(nx) =

π

2a sin(aπ)
cos[a(π − x]] + 1

2a2
,

for a = 0, we have
∞∑
n=1

1

n2
cos(nx) =

1

12
(3x2 − 6πx+ 2π2).

In the identity

1

x
− nC1

x+ 1
+

nC2

x+ 2
+ · · ·+ (−1)n nCn

x+ n

=
n!

x(x+ 1)(x+ 2) · · · (x+ n)
,

from the singular points, we obtain many identities, for example,
from x = 0, we obtain the identity

−nC1 +
nC2

2
+ · · ·+ (−1)n nCn

n

= −
(
1 +

1

2
+

1

3
+ · · ·+ 1

n

)
.

We can derive many identities in this way.

94



For the rational equation

2(x− 1)

(x− 1)(x+ 1)
= 1,

we obtain the natural solution x = 1 by the division by zero
calculus. However, we did not consider so; that is, there is no
solution for the equation.

For the equation

x− 4y + 2z

x
=

2x+ 7y − 4z

y
=

4x+ 10y − 6z

z
= k,

from k = 1, we have the solution with parameter λ

x = y = λ, z = 2λ.

We obtain also the natural solution

x = y = z = 0.

However, then k = 0.

For the equation
x− x =

x

x
(5.7)

(Nathaniel Andika: 2019.6.22.05:36 in Quora), we have the so-
lution x = 0.

On the history of mathematics, we have the nature that in
order to solve equations, we extended the number system; for
example, in order to solve the equation x2 = −1, we introduced
the complex numbers by introducing i. On this history, we
can consider that in order to solve the fundamental equation
(5.7) we introduced the division by zero 0/0 = 0 by giving the
meaning of x

x at the point x = 0.

We consider the expansions

y = ax+ bx2 + cx3 + · · · (a 6= 0)
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and
x = Ay +By2 + Cy3 + · · · ,

then we have
A =

1

a
,

B = − b

a3
,

a5C = 2b2 − ac,

and
a7D = 5abc−−a2d− 5b3,

and so on.
If a = 0, then from

y = bx2 + cx2 + · · · ,

we have
bA2 = 0, 2bAB = 0, · · ·

and so,
y ≡ 0

and
x ≡ 0.

Therefore, all the constants a, b, c, · · · ;A,B,C, · · · are zero. Hence,

A =
1

0
= 0

and
B = −0

0
= 0.
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5.6 Inequalities
For the problem

f(x) =
1

(x− 1)(x− 2)
< 0,

we have the solution
1 < x < 2

in the usual sense. However, note that by the division by zero
calculus

f(1) = −1

and
f(2) = −1.

Therefore, we have the solution

1 ≤ x ≤ 2.

Meanwhile, we know
Growth Lemma ([72], 267 page) For the polynomial

P (z) = a0 + a1z + ...+ anz
n(a0, an 6= 0, n > 1)

we have the inequality with a sufficient r, for |z| ≥ r

|an|
2
|z|n ≤ |P (z)| ≤ 3|an|

2
|z|n.

At the point at infinity, since P (z) takes the value a0, the
inequality is not valid more.

In the inequality

π <
sinπx

x(1− x)
≤ 4 (0 < x < 1)

([1], page 75, 4.3.82), the function takes π at x = 0, 1 and so we
have the inequality
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π ≤ sinπx

x(1− x)
≤ 4 (0 ≤ x ≤ 1).

Therefore, for inequalities, for the values of singular points
by means of the division by zero calculus, we have to check the
values, case by case.

5.7 We can divide the numbers and analytic func-
tions by zero

In the division by zero like 1/0, 0/0 the important problem was
on their definitions. We will give our interpretation.

On based on the division by zero calculus, the meaning (def-
inition) of

1

0
= 0

is given by f(0) = 0 by means of the division by zero calculus
for the function f(z) = 1/z. Similarly, the definition

0

0
= 0

is given by f(0) = 0 by means of the division by zero calculus
for the function f(z) = 0/z.

Of course, for any constant function f(z) = c, by the division
by zero calculus,

f(z)

z
|z=0 = 0.

For any c, we write it as follows:
z

0
= 0,

as its definition. Here, we should not confuse with the result by
the division by zero calculus

z

z
|z=0 = 1.
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In the division by zero, the essential problem was in the
sense of the division by zero (definition) z/0. Many confusions
and simple history of division by zero may be looked in [65].

In order to give the precise meaning of division by zero, we
will give a simple and affirmative answer, for a famous rule that
we are not permitted to divide the numbers and functions by
zero. In our mathematics, prohibition is a famous word for the
division by zero. It is a famous rule that we are not permitted
to divide the numbers and functions by zero. For this old and
general concept, we will give a simple and affirmative answer. In
particular, certainly we gave several generalizations of division,
however, we will wish to understand with some good feelings
for the division. We wish to know with some good feelings for
the sense of division. We wish to give a good meaning for the
division by zero.

For any analytic function f(z) around the origin z = 0 that
is permitted to have any singularity at z = 0 (of course, any
constant function is permitted), we can consider the value, by
the division by zero calculus

f(z)

zn
(5.8)

at the point z = 0, for any positive integer n. This will mean
that from the form we can consider it as follows:

f(z)

zn
|z=0 . (5.9)

For example,

ex

xn
|x=0=

1

n!
.

In this sense, we can divide the numbers and analytic func-
tions by zero. For z 6= 0, f(z)

zn means the usual division of the
function f(z) by zn.

The content of this subsection was presented by [82].
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5.8 Pythagorean theorem
In the well known parameter representation of the Pythagorean
theorem for a right angle triangle

a = m+ n,

b =
2mn

m− n
,

and
c =

m2 + n2

m− n
,

for the case of m = n, by the division by zero calculus, we have
the interesting result

a = b = c = 2n.

5.9 Pompe’s theorem
Theorem([71]): Let ABC be an equilateral triangle and let G
be a point on the side AB. Points P and Q lie on the sides AC
and BC, respectively, and satisfy ∠PGC = ∠QGC = π/6. Let
α = ∠AGP and β = ∠BGQ. Denote by r1 and r2 the inradii
of the triangles AGP and BGQ, respectively. Then

r1
r2

=
sin 2α

sin 2β
. (5.10)

We consider the case β = π/2 in the sense of division by zero
and division by zero calculus. In this case the point G coincides
with B, then the triangle BQG degenerates to the point B, i.e.,
r2 = 0. In this case the left side of (5.10) equals r1/0 = 0. Also
the right side equals sin 2α/ sin 2π = sin 2α/0 = 0. Therefore
(5.10) holds.

100



On the other hand the right side of (5.10) is a function of
B; sin 2(2π/3−B)/ sin 2B and

sin 2(2π/3− x)
sin 2x

= −
√
3

4x
+

1

2
+

x√
3
+ · · · .

This implies that
r1
r2

=
sin 2α

sin 2β
=

1

2

in the case β = 0 by division by zero calculus. The large circle
has radius r2 = 2r1 and center B = Q. It is orthogonal to the
lines AB, BC and the perpendicular to AB at B. Therefore
the circle still touches the three lines, since tan(π/2) = 0, i.e.,
it is the circle of radius 2r1 touching the lines AB, BC and the
perpendicular to AB at B.

Note that for many cases, we can calculate the division by
zero calculus by MATHEMATICA, because it is just a coeffi-
cient of Laurent expansion.

For the beautiful figures and the details, see the original
paper ([41]).

5.10 Remainder theorem and division by zero cal-
culus

For the elementary theorem of remainder in polynomials we
recall the division by zero calculus that appears naturally in
order to show the importance of the division by zero calculus.

We found a very interesting question on the relation of the
remainder theorem and division by zero on 2019.10.22 at Atsu
Gake

Accademia Nuts: https://twitter.com/search?q=

On the good question, we stated our opinions to the site.
We feel that the question is very natural and the problem may
be contributed to a good understanding on the division by zero
calculus.
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The remainder theorem on polynomials may be stated as
follows:

For a polynomial f(x) when we look for the value f(a), we
divide it by the factor (x− a) as follows:

f(x)

x− a
= Q(x) · · ·R

with the remainder R. Then we obtain

f(a) = R.

Here, it seems that we divided there the function f(x) by the
zero (x−a)|x=a that was proposed as a question there. However,
for the theorem there is no problem from the identity

f(x) = (x− a)Q(x) +R.

However, we would like to answer some general and good
view-point on this problem.

Among any polynomials (or generally, analytic functions) we
can consider the division; there we do not consider any singular
points and zero points. Except singular points and zero points,
of course, there is no problem for any division.

Now, by the division by zero calculus, we can consider the
values at singular points and there is no problem in the logic
for deriving the remainder theorem.

Indeed, in the identity

f(x)

x− a
|x=a = Q(x)|x=a +

R

x− a
|x=a,

the identity

f(x)

x− a
|x=a = f ′(a) = Q(x)|x=a

is valid, by the division by zero calculus.
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6 General order differentials and division
by zero calculus

As a typical example, we recall the formula; for the function

y = log x,

we have, for general order n derivatives,

y(n) = (−1)n−1 (n− 1)!

xn
. (6.1)

How will be the case for n = 0 in this formula? We will expect
that for n = 0, y = log x. However, in this case (−1)! diverges
as Γ(0). Here, we will show that this curious property may be
interpretated by the division by zero, precisely by the division
by zero calculus.

By using the identity (n−1)! = Γ(n) and we obtain, around
n = 0, by considering an analytic function in n for Γ(n)

Γ(n) =
1

n
− γ +

1

12
(6γ2 + π2)n+ ....

By the expansion

x−n = exp(−n log x) = 1− n log x+
1

2
n2(log x)2 + · · ·,

we obtain the result, by the division by zero calculus

y(0) = log x+ γ.

Here, the Euler constant γ appears in an extra way as in an
integral constant.

For
y = arctanx,

we have the formula

y(n) = (n− 1)! cosn y sinn
(
y +

π

2

)
.
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From the expansion

cosn y sinn
(
y +

π

2

)
=
(
y +

π

2

)
n+ ()n2 + · · ·,

we have
y +

π

2
= arctanx+

π

2
.

We consider the function

y = a arctan
x

a
.

Then, for x > 0

y(n) = (−1)n−1a
(n− 1)!

(a2 + x2)(n/2)
sin
(
n arctan

a

x

)
.

For x < 0

y(n) = −a (n− 1)!

(a2 + x2)(n/2)
sin
(
n arctan

a

x

)
.

From the expansion

a−n sin bn = (1− n log a+ n2() + · · ·)
(
bn− b3n3

3!
+ · · ·

)
,

we have

y(n) = −a arctan a
x
= a

(
arctan

x

a
± π

2

)
.

For the function

y = arctan
x sinα

1− x cosα
,

we have

y(n) =
(n− 1)!

sinn α
sinn(α+ y) sinn(α+ y).
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For the function

y = arctan
x sinα

1 + x cosα
,

we have

y(n) = (−1)n−1 (n− 1)!

sinn α
sinn(α− y) sinn(α− y).

For these functions, from the expansion

a−n sin bn sinn(cn) = (1−n log a+n2()+ · · ·)
(
bn− b3n3

3!
+ · · ·

)
·(1− n log c+ n2() + · · ·),

we obtain
y + α,

and
y − α,

respectively.
In connection with the problem, we will give interesting ex-

amples.
For the function

y =
ax+ b

cx+ d
,

we have, in general

y(n) = (−1)n−1n!
(ad− bc)cn−1

(cx+ d)n+1
.

For n = 0, however, y(0) 6= y.

For the function
y = x3 log

x

a
,
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we have, in general,

y(n) = (−1)n−4 6(n− 4)!

xn−3
. (6.2)

For the case n = 0, by the expansion of Γ(n− 3) at n = 0

Γ(n− 3) = − 1

6n
+

1

36
(6γ − 11) + ()n+ · · ·,

we have
x3 log x+

x3

60
(6γ − 11).

For the function

yn = xn−1 log x,

we have
y(n)n =

(n− 1)!

x
.

Then, for n = 0, we have
−γ
x

and it is not y0. However, they are valid for n > 0.
In general order n derivative representations of functions,

when we consider negative orders, we have integral formulas for
some case.

For example, in (6.1), when we use the expansions

Γ(n) = − 1

n+ 1
+ (γ − 1) + ()(n+ 1) + · · ·

and
1

xn
= x− (n+ 1)x log x+ ()(n+ 1)2 + · · ·,

we have the formula
1

2
x2 log x+

1

4
(3− 2γ)x2.
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In (6.2), from the expansions

Γ(n− 3) =
1

24(n+ 1)
+

1

288
(25− 12γ) + ()(n+ 1) + · · ·,

we obtain
1

4
x4 log x− 3

144
(25− 12γ)x4.

For the function
y = arctan

1

x
,

we have
y(n) = (−1)nΓ(n) sinny sinn y.

For n = 0, by the division by zero calculus, we have y(0) = y.
Meanwhile, for n = −1, by the division by zero calculus, we

have
y(−1) =

y cos y

sin y
− log sin y.

By noting that y′ = − sin2 y, we see that(
y(−1)

)′
= y.

Why division by zero for zero order representations for some
general differential order representations of functions does hap-
pen?

6.1 Division by zero calculus and computers

On February 16, 2019 Professor H. Okumura introduced the
surprising news in Research Gate:

José Manuel Rodríguez Caballero
Added an answer
In the proof assistant Isabelle/HOL we have x/0 = 0 for each
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number x. This is advantageous in order to simplify the proofs.
You can download this proof assistant here:
https://isabelle.in.tum.de/

J.M.R. Caballero kindly showed surprisingly several exam-
ples by the system that

tan
π

2
= 0,

log 0 = 0,

exp
1

x
(x = 0) = 1,

and others.
The relation of Isabelle/HOL and division by zero is un-

clear at this moment, however, the following document will be
interested in:

Dear Saitoh,
In Isabelle/HOL, we can define and redefine every function

in different ways. So, logarithm of zero depends upon our defini-
tion. The best definition is the one which simplify the proofs the
most. According to the experts, z/0 = 0 is the best definition
for division by zero.

tan(π/2) = 0

log 0 =

is undefined (but we can redefine it as 0)

e0 = 1

(but we can redefine it as 0)

00 = 1

(but we can redefine it as 0).
In the attached file you will find some versions of logarithms

and exponentials satisfying different properties. This file can
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be opened with the software Isabelle/HOL from this webpage:
https://isabelle.in.tum.de/

Kind Regards,
José M.
(2017.2.17.11:09).

At 2019.3.4.18:04 for my short question, we received:

It is as it was programmed by the HOL team.
Jose M.
On Mar 4, 2019, Saburou Saitoh wrote:
Dear José M.
I have the short question.
For your outputs for the division by zero calculus, for the

input, is it some direct or do you need some program???
With best regards, Sincerely yours,
Saburou Saitoh 2019.3.4.18:00

Furthermore, for the presentation at the annual meeting of
the Japanese Mathematical Society at the Tokyo Institute of
Technology:

March 17, 2019; 9:45-10:00 in Complex Analysis Session,
Horn torus models for the Riemann sphere from the viewpoint
of division by zero with [24],

he kindly sent the message:

It is nice to know that you will present your result at the
Tokyo Institute of Technology. Please remember to mention
Isabelle/HOL, which is a software in which x/0 = 0. This soft-
ware is the result of many years of research and a millions of
dollars were invested in it. If x/0 = 0 was false, all these money
was for nothing. Right now, there is a team of mathematicians
formalizing all the mathematics in Isabelle/HOL, where x/0 =
0 for all x, so this mathematical relation is the future of math-
ematics. https://www.cl.cam.ac.uk/ lp15/Grants/Alexandria/
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Surprisingly enough, he sent his e-mail at 2019.3.30.18:42 as
follows:

Nevertheless, you can use that x/0 = 0, following the rules
from Isabelle/HOL and you will obtain no contradiction. In-
deed, you can check this fact just downloading Isabelle/HOL:
https://isabelle.in.tum.de/

and copying the following code
theory DivByZeroSatoih imports Complex Main
begin
theorem T: ‹x/0 + 2000 = 2000› for x :: complex by simp

6.2 Remarks for the applications of the division by
zero and the division by zero calculus

As the number system, we can calculus the arithmetic by the Ya-
mada field structure. However, for functions, the problems are
involved for their structures and we have also delicate problems
for the smoothness of functions. So, for applying the division
by zero calculus, we should consider and apply the division by
zero and division by zero calculus in many ways and check the
results. By considering many ways, we will be able to
see many new aspects and results obtained. By check-
ing the results obtained, we will be able to find new
prospects. With this idea, we can enjoy the division by
zero calculus with a free spirit without logical problems.
– For this idea, we may ask and consider what is mathematics?
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7 TRIANGLES, TRIGONOMETRIC
FUNCTIONS AND HARMONIC
MEAN

In order to see how elementary of the division by zero, we will
see the division by zero in triangles, trigonometric functions and
harmonic mean as the fundamental objects. Even the cases of
triangles, trigonometric functions and harmonic mean, we can
derive new concepts and results.

Even the case
tanx =

sinx

cosx
,

we have the identity, for x = π/2

0 =
1

0
.

Of course, for identities for analytic functions, they are still
valid even at isolated singular points with the division by zero
calculus. Here, we will see many more direct applications of
the division by zero 1/0 = 0/0 = 0 as in the above with some
meanings.

Note that from the inversion of the both sides

cotx =
cosx

sinx
,

for example, we have, for x = 0,

0 =
1

0
.

By this general method, we can consider many problems.
We will consider a triangle ABC withBC = a,CA = b, AB =

c. Let θ be the angle of the side BC and the bisector line of A.
Then, we have the identity

tan θ =
c+ b

c− b
tan

A

2
, b < c.
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For c = b, we have

tan θ =
2b

0
tan

A

2
.

Of course, θ = π/2; that is,

tan
π

2
= 0.

Here, we used
2b

0
= 0

and we did not consider that by the division by zero calculus

c+ b

c− b
= 1 +

2b

c− b

and for c = b
c+ b

c− b
= 1.

In the Napier’s formula

a+ b

a− b
=

tan(A+B)/2

tan(A−B)/2
,

there is no problem for a = b and A = B.

Masakazu Nihei derived the result (H. Okumura sent his
result at 2018.11.29.10:06):

Let θ be the angle of ADB for the midpoint D of BC. Then,
we have

tan θ =
2bc sinA

(b− c)(b+ c)
.

Here, for b = c, of course, we have θ = π/2 and tan π
2 = 0.

Similarly, in the formula

b− c
b+ a

1

tan A
2

+
b+ c

b− c
tan

A

2
=

2

sin(B − C)
,

112



for b = c, B = C, and we have

0 +
2c

0
tan

A

2
=

2

0
,

that is right.
We have the formula

a2 + b2 − c2

a2 − b2 + c2
=

tanB

tanC
.

If a2 + b2 − c2 = 0, then by the Pythagorean theorem C = π/2.
Then,

0 =
tanB

tan π
2

=
tanB

0
.

Meanwhile, for the case a2− b2+ c2 = 0, B = π/2, and we have

a2 + b2 − c2

0
=

tan π
2

tanC
= 0.

In the formula
a2 + b2 + c2

2abc
=

cosA

a
+

cosB

b
+

cosC

c
,

for the case a = 0, with b = c and B = C = π/2 the identity
holds.

Meanwhile, the lengths f and f ′ of the bisector lines of A
and in the out of the triangle ABC are given by

f =
2bc cos A

2

b+ c

and
f ′ =

2bc sin A
2

b− c
,

respectively.
If b = c, then we have f ′ = 0, by the division by zero.

However, note that, from

f ′ = 2 sin
A

2

(
c+

c2

b− c

)
,
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by the division by zero calculus, for b = c, we have

f ′ = 2b sin
A

2
= a.

The result f ′ = 0 is a popular property, but the result f ′ = a is
also an interesting popular property. See [41].

Let H be the perpendicular leg of A to the side BC and let
E and M be the mid points of AH and BC, respectively. Let θ
be the angle of EMB (b > c). Then, we have

1

tan θ
=

1

tanC
− 1

tanB
.

If B = C, then θ = π/2 and tan(π/2) = 0.
In the formula

cosA =
b2 + c2 − a2

2bc
,

if b or c is zero, then, by the division by zero, we have cosA = 0.
Therefore, then we should understand as A = π/2.

This result may be derived from the formulas

sin2
A

2
=

(a− b+ c)(a+ b− c)
4bc

and
cos2

A

2
=

(a+ b+ c)(−a+ b+ c)

4bc
,

by applying the division by zero calculus.
This result is also valid in the Mollweide’s equation

sin
B − C

2
=

(b− c) cos A
2

a
,

for a = 0 as
0 =

(b− c) cos A
2

0
.
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Let r be the radius of the inscribed circle of the triangle
ABC, and rA, rB, rC be the distances from A, B, C to the lines
BC, CA, AB, respectively. Then we have

1

r
=

1

rA
+

1

rB
+

1

rC
.

When A is the point at infinity, then, rA = 0 and rB = rC = 2r
and the identity still holds.

We have the identities, for the radius R of the circumscribed
circle of the triangle ABC,

S =
arA
2

=
1

2
bc sinA

=
1

2
a2

sinB sinC

sinA

=
abc

4R
= 2R2 sinA sinB sinC = rs, s =

1

2
(a+ b+ c).

If A is the point at infinity, then, S = s = rA = b = c = 0 and
the above identities all valid.

For the identity
tan

A

2
=

r

s− a
,

if the point A is the point at infinity, A = 0, s − a = 0 and
the identity holds as 0 = r/0. Meanwhile, if A = π, then the
identity holds as tan(π/2) = 0 = 0/s.

In the identities

cot
A

2
+ cot

B

2
+ cot

C

2
= cot

A

2
· cot B

2
· cot C

2

and

cotA+cotB+cotC = cotA · cotB · cotC+cscA · cscB · cscC,

we see that they are valid for A = π and B = C = 0.
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For the identity

cot(z1 + z2) =
cot z1 cot z2 − 1

cot z1 + cot z2
,

for z1 = z2 = π/4, the identity holds.
For a triangle, we have the identity

cotA+ cot(B + C) = 0.

For the case A = π/2, the identity is valid.
For the identity

tanA+ tanB + tanC = tanA · tanB · tanC,

for A = π/2, the identity is valid.
In the sine theorem:

a

sinA
=

b

sinB
=

c

sinC
= 2R,

for A = π, B = C = 0 and then we have

a

0
=
b

0
=
c

0
= 0.

In the formula

cosA cosB

ab
+

cosB cosC

bc
+

cosC cosA

ca
=

sin2A

a2

for a = 0, A = 0, b = c, B = C = π/2, the identity is valid.
In the formula

R =
abc

4S
,

for S = 0, we have
R = 0

(H. Okumura: 2017.9.5.7:40).
In the formula

cosA+ cosB =
2(a+ b)

c
sin2

C

2
,
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for c = 0, we have b = c and A = B = π/2 and the identity is
valid.

In a triangle ABC, let H be the orthocenter and J be the
common point of the three perpendicular bisectors. Then, we
have

AH = da =
a

tanA

and

the distance of J to the line BC = ha =
a

2 tanA
.

For A = π/2, we have that da = h2 = 0 (V. V. Puha:
2018.7.12.18:10).

In a triangle ABC, let X be the leg of the perpendicular line
from A to the line BC and let Y be the common point of the
bisector line of A and the line BC. Let P and Q be the tangen-
tial points on the line BC with the incircle of the triangle and
the inscribed circle in the sector with the angle A, respectively.
Then, we know that

XP

PY
=
XQ

QY
.

If AB = AC, then, of course, X=Y=P=Q. Then, we have

0

0
=

0

0
= 0.

Let X, Y, Q be the common points with a line and three lines
AC, BC and AB, respectively. Let P be the common point with
the line AB and the line through the point C and the common
point of the lines AY and BX. Then, we know the identity

AP

AQ
=
BP

BQ
.

If two lines XY and AB are parallel, then the point Q may be
considered as the point at infinity. Then, by the interpretation
AQ = BQ = 0, the identity is valid as
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AP

0
=
BP

0
= 0.

For the tangential function, note the following identities.
In the formula

tan
θ

2
=

sin θ

1 + cos θ
= ±

√
1− cos θ

1 + cos θ
,

for θ = π, we have that 0=0/0.
For the inversions and from x = 0, we have

1

0
=

2

0
= ±

√
2

0
= 0.

In the formula

tan z1 ± tan z2 =
sin(z1 + z2)

sin z1 sin z2
,

for z1 = π/2, z2 = 0, we have that 0=1/0.
In the formula

tan
x

2
=

1±
√
1− sin2 x

sinx
,

for x = π, we have
0 =

0

0
.

In the elementary identity

tan(α+ β) =
tanα+ tanβ

1− tanα tanβ
,

for the case α = β = π/4, we have

tan
π

2
=

1 + 1

1− 1 · 1
=

2

0
= 0.

Further note that it is valid for α+ β = 0 and α+ β = π/2 (H.
Okumura: 2018.8.7.8:03). Furthermore, the formula
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tan(α+ β) =

1
tanα + 1

tanβ
1

tanα tanβ − 1
,

is valid for α = π/2 or β = π/2 and for α + β = π/2 (H.
Okumura: 2018.7.11.21:05).

In the identity√
1− sinα

1 + sinα
=

1

cosα
− tanα,

for α = π/2, we have
0 =

1

0
− 0.

For the double angle formula

tan 2α =
2 tanα

1− tan2 α
,

for α = π/2, we have that

0 =
2 · 0
1− 0

.

In the identity

tan 3α =
2 tanα− tan3 α

1− 3 tan2 α
,

for α = π/6, we have
tan

π

2
= 0,

that is right.
In the identities

1 + cosx

sinx
=

sinx

1− cosx

and
1− cosx

sinx
= tan

x

2
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for x = 0, we have the identity

0

0
= 0.

In the identities

tan(x+ iy) =
sin 2x+ i sinh 2y

cos 2x+ cosh 2y

and
cot(x+ iy) =

sin 2x− i sinh 2y
cosh 2x− cos 2x

for x = π/2, y = 0, they are valid.
In the identity

arctan

√
b

a
= arcsin

√
b

a+ b
,

for a = 0, the identity is valid.
We can find similar interesting identities in the following

identities:

sin 3x+ sinx

cos 3x+ cosx
= tan 2x,

sin 3x+ sinx

cos 3x− cosx
= − cotx

and
sin 3x− sinx

cos 3x+ cosx
= tanx

(H. Okumura: 2019.1.31 and the first one is obtained by M.
Nihei).

We consider a triangle ABP with A(−a, 0), B(a, 0), P (x, y)
with a > 0. Then we have

∠QPA = tan−1 x+ a

y
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and
∠QPB = tan−1 y − a

y
.

For y = 0, we obtain

∠QPA = tan−1 x+ a

0
= tan−1 0 =

π

2

and
∠QPB = tan−1 x− a

0
= tan−1 0 =

π

2
.

In addition, M. Nihei remarked the following identities through
H. Okumura (2018.7.8.12:12; 2019.1.31):

sin 2x

1 + cosx
=

1− cosx

sin 2x
= tanx,

1 + sin 2x+ cos 2x

1 + sin 2x− cos 2x
= cotx,

sin 2x

1− cos 2x
=

1 + cos 2x

sin 2x
= cotx,

and in a triangle

cotA+ cotB + cotC =
a2 + b2 + c2

4S
.

Consider the case x = π/2 in the above two formulas and in the
triangle, consider the case A = π/2.

We recall that the harmonic mean H(a, b) for non zero real
numbers a, b is given by

H(a, b) =
2

1
a + 1

b

, (7.1)

or
H(a, b) =

2ab

a+ b
. (7.2)

Here, we wish to consider, for example, for b = 0. When we use
the representation (7.2), then we have H(a, 0) = 0, however,
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when we use the presentation (7.1), we have H(a, 0) = 2a, by
the division by zero. We would like to show that the result in
this case should be that

H(a, 0) = a. (7.3)

Our interpretation for this result is given by the following way.
At first, by the division by zero

H(a, 0) =
2

1
a + 1

0

= 2a.

However, in this case the number 2 means the harmonic
mean for two numbers and in this case 0 means that the zero
term does not exist; that is, nothing or void and so, we should
replace by one for two. Then, we will have our interpretation.
In the sequel, we will show this interesting phenomena in several
geometric properties which show interesting new phenomena on
Euclidean geometry.

Quadrilateral case

The common point of the line y = bx and y = −ax + a
(a, b > 0) is (a/(a+ b), ab/(a+ b)).

For the function y = bx, if b = 0, then we have y = 0 and
we have H/2 = 0.

However, for the function y = bx, if b = 0, from y/b = x and
the division by zero, we have x = 0 and then, H/2 = a.

Triangle case

We consider the line passing two points (a, 0) and (0, b)
(a, b > 0). Then for the distance h from the origin to the line is
given by

h2 =
a2b2

a2 + b2
.

For the line
x

a
+
y

b
= 1,
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for b = 0, we have x = a, by the division by zero. Then, we can
consider that h = a. Meanwhile, from the equation bx+ay = ab
and for b = 0, we have y = 0. Then, we have h = 0.

Trapezoid case

We consider the trapezoid surrounded by the 4 lines y axis,
x axis, y = 2r (r > 0) and the tangential line of the circle
(x − r)2 + (y − r)2 = r2. Let (a, 0) be the common point with
the x axis and the tangential line and let (b, 2r) be the common
point with the tangential line and the line y = 2r. Then, we
have

H = 2r =
2ab

a+ b
.

The inscribed circle in the trapezoid is given by

(a+ b)2(x2 + y2)− 2ab(a+ b)(x+ y) + a2b2 = 0.

By dividing by b2, we have, by the division by zero

(x− a)2 + (y − a)2 = a2. (7.4)

By dividing by b, we have, by the division by zero(
x− a

2

)2
+
(
y − a

2

)2
=

(
a√
2

)2

. (7.5)

For b = 0, we have

x2 + y2 = 0. (7.6)

In the cases (7.4) and (7.6), H/2 may be looked as a and 0,
respectively and for (7.5), the result may be looked curiously.

Semi-circle case

For a fixed a > 0 and for b > 0, we consider the semi-circle

x2 − (a+ b)x+ y2 = 0. (7.7)
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The distance to the line connecting the points ((a+ b)/2, 0) and
the common point with the circle and the line x = a from the
point (a, 0) is given by

H(a, b) =
2

1
a + 1

b

. (7.8)

For b = 0, we have the circle(
x− a

2

)2
+ y2 =

(a
2

)2
. (7.9)

This means that H = 0.
However, by dividing the circle by b, by the division by zero,

we have x = 0; this means that H/2 = a.
For the harmonic mean, its source is taken from [64].
V. V. Puha gave the beautiful definition of the harmonic

means with the good notation as follows:

H(x1, x2, ..., xn) =

∑n
j=1

xj

xj∑n
j=1

1
xj

(2018.6.4.7:22).
For the formula, for any positive constants

ab(a′ + b′)

aa′ + bb′ + cc′
;

which has a beautiful geometry interpretation, for a = a′, b′ = 0
it is b. However, from

ab(1/b′ + 1/a′)

a/b′ + b/a′ + 1
;

or
ab(a′/b′ + 1)

aa′/b′ + b+ a′
;

by the division by zero, we have
ab

a+ b

which has a beautiful relation with the general case (H. Oku-
mura: 2019.3.9.8:40).

124



8 DERIVATIVES OF A FUNCTION
On derivatives, we obtain new concepts, from the division by
zero calculus. At first, we will consider the fundamental prop-
erties. From the viewpoint of the division by zero, when there
exists the limit, at x

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

=∞ (8.1)

or
f ′(x) = −∞, (8.2)

both cases, we can write them as follows:

f ′(x) = 0. (8.3)

This definition is reasonable, because the point at infinity is
represented by 0.

This property was also derived from the fact that the gradi-
ent of the y axis is zero; that is,

tan
π

2
= 0, (8.4)

that was looked from many geometric properties in Section 6
and in [41], and also in the formal way from the result 1/0 =
0. Of course, by the division by zero calculus, we can derive
analytically the result, because

tanx = − 1

x− π/2
+

1

3
(x− π/2) + 1

45
(x− π/2)3 + · · · .

From the reflection formula of the Psi (Digamma) function

ψ(1− z) = ψ(z) + π
1

tanπz

([1], 258), we have, for z = 1/2,

tan
π

2
= 0.
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Note also from the identity

1

ψ(1− z)− ψ(z)
=

tanπz

π
,

we have
1

ψ(1− z)− ψ(z)
(z = 0) = 0

and
1

ψ(1− z)− ψ(z)

(
z =

π

2

)
= 0.

We will look this fundamental result by elementary func-
tions. For the function

y =
√

1− x2,

y′ =
−x√
1− x2

,

and so,
[y′]x=1 = 0, [y′]x=−1 = 0.

Of course, depending on the context, we should refer to the
derivatives of a function at a point from the right hand direction
and the left hand direction.

Here, note that, for x = cos θ, y = sin θ,

dy

dx
=
dy

dθ

(
dx

dθ

)−1

= − cot θ.

Note also that from the expansion

cot z =
1

z
+

+∞∑
ν=−∞,ν ̸=0

(
1

z − νπ
+

1

νπ

)
(8.5)

or the Laurent expansion

cot z =

∞∑
n=−∞

(−1)n22nB2n

(2n)!
z2n−1,
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we have
cot 0 = 0.

Note that in (8.5), since(
1

z − νπ
+

1

νπ

)
ν=0

=
1

z
,

we can write it simply

cot z =

+∞∑
ν=−∞

(
1

z − νπ
+

1

νπ

)
.

We note that in many and many formulas we can apply this
convention and modification.

The differential equation

y′ = −x
y

with a general solution

x2 + y2 = a2

is satisfied for all points of the solutions by the division by zero.
However, the differential equations

x+ yy′ = 0, y′ · y
x
= −1

are not satisfied for the points (−a, 0) and (a, 0).
In many and many textbooks, we find the differential equa-

tions, however, they are not good in this viewpoint.
For the function y = log x,

y′ =
1

x
, (8.6)

and so,
[y′]x=0 = 0. (8.7)
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For the elementary ordinary differential equation

y′ =
dy

dx
=

1

x
, x > 0, (8.8)

how will be the case at the point x = 0? From its general
solution, with a general constant C

y = log x+ C, (8.9)

we see that
y′(0) =

[
1

x

]
x=0

= 0, (8.10)

that will mean that the division by zero 1/0 = 0 is very natural.
In addition, note that the function y = log x has infinite

order derivatives and all values are zero at the origin, in the
sense of the division by zero calculus.

However, for the derivative of the function y = log x, we
have to fix the sense at the origin, clearly, because the function
is not differentiable in the usual sense, but it has a singularity
at the origin. For x > 0, there is no problem for (8.8) and (8.9).
At x = 0, we see that we can not consider the limit in the usual
sense. However, for x > 0 we have (8.9) and

lim
x→+0

(log x)′ = +∞. (8.11)

In the usual sense, the limit is +∞, but in the present case, in
the sense of the division by zero, we have the identity[

(log x)′
]
x=0

= 0

and we will be able to understand its sense graphically.

Note that the function

y = ax+ b+
1

x
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and its derivative
y′ = a− 1

x2
.

Then, the tangential approximate line at x = 0 of the function
is the y axis and so the gradient of the function at the origin
may be considered as zero, however, the derivative at the origin
in the our sense at the singular point is a.

However, note that the gradients of the tangential lines of
the curve converge to a when x tends to +∞, and the origin
and the point at infinity are coincident; that is the curve has
two tangential lines at the origin (at the point at infinity) and
their gradients are zero and a.

By the new interpretation for the derivative, we can arrange
the formulas for derivatives, by the division by zero. The for-
mula

dx

dy
=

(
dy

dx

)−1

(8.12)

is very fundamental. Here, we considered it for a local one to one
correspondence of the function y = f(x) and for nonvanishing
of the denominator

dy

dx
6= 0. (8.13)

However, if a local one to one correspondence of the function
y = f(x) is ensured like the function y = x3 around the origin,
we do not need the assumption (8.13). Then, for the point
dy/dx = 0, we have, by the division by zero,

dx

dy
= 0.

This will mean that the function x = g(y) has the zero derivative
and the tangential line at the point is a parallel line to the y-
axis. In this sense the formula (8.12) is valid, even the case
dy/dx = 0. The nonvanising case, of course, the identity

dy

dx
· dx
dy

= 1 (8.14)
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holds. When we put the vanishing case, here, we obtain the
identity

0× 0 = 1, (8.15)

in a sense. Of course, it is not valid, because (8.14) is unclear
for the vanishing case. Such an interesting property was referred
to by M. Yamane in ([36]).

In addition, for higher-order derivatives, we note the follow-
ing properties. For a function y = f(x) ∈ C3 whose higher-
order derived functions of the inverse function x = g(x) are
single-valued, we note that the formulas

d2x

dy2
= −d

2y

dx2

(
dy

dx

)−3

and
d3x

dy3
= −

[
d3y

dx3
dy

dx
− 3

(
d2y

dx2

)2
](

dy

dx

)−5

are valid, even at a point x0 such that

f(x0) = y0, f
′(x0) = 0

as
d2x

dy2
(y0) =

d3x

dy3
(y0) = 0.

Furthermore, the formulas(
1

f

)′
= − f

′

f2
,

(
1

f

)′′
=

2(f ′)2 − ff ′′

f3
,(

1

f

)′′′
=

6ff ′f ′′ − 6(f ′)3 − f2f ′′′

f4
,
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..., and so on, are valid, even the case

f(x0) = 0,

at the point x0.

In those identities in the framework of analytic functions, at
first we consider their formulas except singular points and then,
following the definition of division by zero calculus at singular
points we consider the valid identities. For the case of functions
that are not analytic functions, we have to consider case by case
at singular points by division by zero or division by zero calculus
idea and we have to check the results.

The derivative of the function

f(x) =
√
x(
√
x+ 1)

f ′(x) =
1

2
√
x
(
√
x+ 1) +

√
x · 1

2
√
x

=
1

2
√
x
+

√
x√
x

is valid at even the origin by using the function
√
x√
x

(V. V. Puha:
2018. June). He derived such formulas by using the function
x/x.

In particular, note that the division by zero calculus is not
almighty. The notation

∆(x) =
x

x
=

{
0 for x = 0

1 for x 6= 0

will be convenient in connection with the Dirac delta function
δ(x).

Thales’ theorem
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We consider a triangleBAC withA(−1, 0), C(1, 0),∠BOC =
θ;O(0, 0) on the unit circle. Then, the gradients of the lines AB
and CB are given by

sin θ

cos θ + 1

and
sin θ

cos θ − 1
,

respectively. We see that for θ = π and θ = 0, they are zero,
respectively.

Indeed,

sinx

cosx+ 1
= − 2

x− π
+
x− π
6

+ · · ·,

and
sinx

cosx− 1
= −2

x
+
x

6
+ · · ·.

Implicit functions

In the function y = y(x) defined by a differentiable implicit
function f(x, y) = 0, we have the formula

dy

dx
= −fx(x, y)

fy(x, y)
.

If fy(a, b) = 0, then the tangential line through the point (a, b)
of the function is given by

fx(a, b)(x− a) + fy(a, b)(y − b) = 0,

that is
x = a.

Then we have
dy

dx
(a, b) = −fx(a, b)

0
= 0.
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9 DIFFERENTIAL EQUATIONS
From the viewpoint of the division by zero calculus, we will see
many incompleteness mathematics, in particular, in the the-
ory of differential equations at an undergraduate level; indeed,
we have considered our mathematics around an isolated singu-
lar point for analytic functions, however, we did not consider
mathematics at the singular point itself. At the isolated sin-
gular point, we considered our mathematics with the limiting
concept, however, the limiting value to the singular point and
the value at the singular point of the function are, in general,
different. By the division by zero calculus, we can consider the
values and differential coefficients at the singular point. From
this viewpoint, we will be able to consider differential equations
even at singular points. We find many incomplete statements
and problems in many undergraduate textbooks. In this section,
we will point out the problems in concrete ways by examples.

This section is an arrangement of the papers [3] and [72]
with new materials.

9.1 Missing a solution
For the differential equation

2xydx− (x2 − y2)dy = 0,

we have a general solution with a constant C

x2 + y2 = 2Cy.

However, we are missing the solution y = 0. By this expression

x2 + y2

C
= 2y,

for C = 0, by the division by zero, we have the missing solution
y = 0.
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For the differential equation

x(y′)2 − 2yy′ − x = 0,

we have the general solution

C2x2 − 2Cy − 1 = 0.

However, x = 0 is also a solution, because

xdy2 − 2ydydx− xdx2 = 0.

From
x2 − 2y

C
− 1

C2
= 0,

by the division by zero, we obtain the solution.
For the differential equation

2y = xy′ − x

y′
,

we have the general solution

2y = Cx2 − 1

C
.

For C = 0, we have the solution y = 0, by the division by zero.
For the differential equation

(x2 − a2)(y′)2 − 2xyy′ − x2 = 0,

we have the general solution

y = Cx2 −
(
a2C +

1

4C

)
.

For C = 0, y = 0, however, this is not a solution. But, this is
the solution of the differential equation

(x2 − a2)(y
′)2

y
− 2xy′ − x2

y
= 0.
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For the differential equation

ydx+ (x2y3 + x)dy = 0,

we have the general solution

− 1

xy
+
y2

2
= C.

Of course, we have the solution y = 0.
For the differential equation

(3x2 − 1)dy − 3xydx = 0,

we have the general solution

3x2 + 2 = Cy2 + 3.

From
3x2 + 2

C
= y2 +

3

C
,

we have the solution y = 0, by the division by zero.

9.2 Differential equations with singularities
For the differential equation

y′ = −y
x
,

we have the general solution

y =
C

x
.

From the expression

xdy + ydx = 0,

we have also the general solution

x =
C

y
.
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Therefore, there is no problem for the origin. Of course, x = 0
and y = 0 are the solutions.

For the differential equation

y′ =
2x− y
x− y

, (9.1)

we have the beautiful general solution with constant C

2x2 − 2xy + y2 = C. (9.2)

By the division by zero calculus we see that on the whole points
on the solutions (9.2) the differential equation (9.1) is satisfied.
If we do not consider the division by zero, for y = x(6= 0), we
will have a serious problem. However, for x = y 6= 0, we should
consider that y′ = 0, not by the division by zero calculus, but
by 1/0 = 0.

For the differential equation

y′ =
2xy

x2 − y2

and for the general solution

x2 + (y − C)2 = C2,

there is no problem at the singular points y = x.
For the differential equation

xy′ = y2 + y,

we have the general solution with constant C

y′ = − x

x− C
.

At the point x = C, the equation is satisfied by the division by
zero 1/0 = 0, not the division by zero calculus.

For the differential equation

x3y′ = x4 − x2y + 2y2,
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we have the general solution with constant C

y =
x2(x+ C)

2x+ C
. (9.3)

Note that we have also a solution x = 0, because,

x3dy = (x4 − x2y + 2y2)dx.

In particular, note that at (0, 0)

y′(0) =
0

0
,

and the general solution (9.3) has the value

y

(
−1

2
C

)
= −1

8
C2,

by the division by zero calculus. For C tending to ∞ in the
general solution, we have the solution y = x2. Then, if we
understand C = 0, we see that the property of the solution is
valid.

9.3 Continuation of solution
We will consider the differential equation

dx

dt
= x2 cos t. (9.4)

Then, as the general solution, we obtain, for a constant C

x =
1

C − sin t
.

For x0 6= 0, for any given initial value (t0, x0) we obtain the
solution satisfying the initial condition

x =
1

sin t0 +
1
x0
− sin t

. (9.5)
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If ∣∣∣∣sin t0 + 1

x0

∣∣∣∣ < 1,

then the solution has many poles and L. S. Pontrjagin stated in
his book that the solution is disconnected at the poles and so,
the solution may be considered as infinitely many solutions.

However, from the viewpoint of the division by zero, the so-
lution takes the value zero at the singular points and the deriva-
tives at the singular points are all zero; that is, the solution (9.5)
may be understood as one solution.

Furthermore, by the division by zero, the solution (9.5) has
its sense for even the case x0 = 0 and it is the solution of (9.4)
satisfying the initial condition (t0, 0).

We will consider the differential equation

y′ = y2.

For a > 0, the solution satisfying y(0) = a is given by

y =
1

1
a − x

.

Note that the solution satisfies on the whole space (−∞,+∞)
even at the singular point x = 1

a , in the sense of the division by
zero, as

y′
(
1

a

)
= y

(
1

a

)
= 0.

9.4 Singular solutions
We will consider the differential equation

(1− y2)dx = y(1− x)dy.

By the standard method, we obtain the general solution, for a
constant C (C 6= 0)

(x− 1)2

C
+ y2 = 1.
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By the division by zero, for C = 0, we obtain the singular
solution

y = ±1.

For the simple Clairaut differential equation

y = px+
1

p
, p =

dy

dx
,

we have the general solution

y = Cx+
1

C
, (9.6)

with a general constant C and the singular solution

y2 = 4x.

Note that we have also the solution y = 0 from the general
solution, by the division by zero 1/0 = 0 from C = 0 in (9.6).

9.5 Solutions with singularities
1). We will consider the differential equation

y′ =
y2

2x2
.

We will consider the solution with an isolated singularity at a
point a taking the value −2a in the sense of division by zero.

First, by the standard method, we have the general solution,
with a constant C

y =
2x

1 + 2Cx
.

From the singularity, we have, C = −1/2a and we obtain the
desired solution

y =
2ax

a− x
.

Indeed, from the expansion

2ax

a− x
= −2a− 2a2

x− a
,
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we see that it takes−2a at the point a in the sense of the division
by zero calculus. This function was appeared in ([40]).

2). For any fixed y > 0, we will consider the differential
equation

E(x, y)
∂E(x, y)

∂x
=

y2d2

(y − x)3

for 0 ≤ x ≤ y. Then, note that the function

E(x, y) =
y

y − x
√
d2 + (y − x)2

satisfies the differential equation satisfying the condition

[E(x, y)]x=y = 0,

in the sense of the division by zero. This function was appeared
in showing a strong discontinuity of the curvature center (the
inversion of EM diameter) of the circle movement of the rotation
of two circles with their radii x and y in ([40]).

3). We will consider the singular differential equation

d2y

dx2
+

3

x

dy

dx
− 3

x2
y = 0. (9.7)

By the series expansion, we obtain the general solution, for any
constants a, b

y =
a

x3
+ bx. (9.8)

We see that by the division by zero

y(0) = 0, y′(0) = b, y′′(0) = 0.

The solution (9.8) has its sense and the equation is satisfied
even at the origin. The value y′(0) = b may be given arbitrary,
however, in order to determine the value a, we have to give some
value for the regular point x 6= 0. Of course, we can give the
information at the singular point with the Laurent coefficient
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a, that may be interpreted with the value at the singular point
zero. Indeed, the value a may be considered at the value

[y(x)x3]x=0 = a.

4). Next, we will consider the Euler differential equation

x2
d2y

dx2
+ 4x

dy

dx
+ 2y = 0.

We obtain the general solution, for any constants a, b

y =
a

x
+

b

x2
.

This solution is satisfied even at the origin, by the division by
zero and furthermore, all derivatives of the solution of any order
are zero at the origin.

5). We will note that as the general solution with constants
C−2, C−1, C0

y =
C−2

x2
+
C−1

x
+ C0,

we obtain the ordinary differential equation
x2y′′′ + 6xy′′ + 6y′ = 0.

6). For the differential equation
y′ = y2(2x− 3),

we have the special solution

y =
1

(x− 1)(2− x)
on the interval (1, 2) with the singularities at x = 1 and x = 2.
Since the general solution is given by, for a constant C,

y =
1

−x2 + 3x+ C
,

we can consider some conditions that determine the special so-
lution.
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9.6 Solutions with an analytic parameter
For example, in the ordinary differential equation

y′′ + 4y′ + 3y = 5e−3x,

in order to look for a special solution, by setting y = Aekx we
have, from

y′′ + 4y′ + 3y = 5ekx,

y =
5ekx

k2 + 4k + 3
.

For k = −3, by the division by zero calculus, we obtain

y = e−3x

(
−5

2
x− 5

4

)
,

and so, we can obtain the special solution

y = −5

2
xe−3x.

For example, for the differential equation

y′′ + a2y = b cosλx,

we have a special solution

y =
b

a2 − λ2
cosλx.

Then, for λ = a (reasonance case), by the division by zero
calculus, we obtain the special solution

y =
bx sin(ax)

2a
+
b cos(ax)

4a2
.

Indeed, we have the expansion

y = − b cos(ax)
2a(λ− a)

+

(
bx sin(ax)

2a
+
b cos(ax)

4a2

)
+ (·)(λ− a) + · · ·.
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The Newton kernel, for N > 2,

ΓN (x, y) =
1

N(2−N)ωN
|x− y|2−N

and
Γ2(x, y) =

1

2π
log |x− y|,

where
ωN =

2πN/2

NΓ(N/2)
.

From ΓN (x, y), by the division by zero calculus, we have

1

2π
log |x− y|+ 1

4π
(γ + log π),

where γ is the Euler constant.
For the Green function GN (x, y) of the Laplace operator on

the ball with its center at a and its radius r on the Euclidean
space of N(N ≥ 3) dimension is given by

GN (x, y) = ‖x− y‖2−N −
(

r

‖y − a‖
1

‖x− y∗‖

)N−2

,

where y∗ is the inversion of y

y∗ − a =

(
r

‖y − a‖

)2

(y − a).

By N = 2, we obtain the corresponding formula, by the division
by zero calculus,

G2(x, y) = log

(
‖y − a‖

r

‖x− y∗‖
‖x− y‖

)
([4], page 91).

We can find many examples.
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9.7 Special reductions by division by zero of solu-
tions

For the differential equation

y′′ − (a+ b)y′ + aby = ecx, c 6= a, b; a 6= b,

we have the special solution

y =
ecx

(c− a)(c− b)
.

If c = a(6= b), then, by the division by zero calculus, we have

y =
xeax

a− b
.

If c = a = b, then, by the division by zero calculus, we have

y =
x2eax

2
.

For the differential equation

m
d2x

dt2
+ γ

dx

dt
+ kx = 0,

we obtain the general solution, for γ2 > 4mk

x(t) = e−αt
(
C1e

βt + C2e
−βt
)

with
α =

γ

2m

and
β =

1

2m

√
γ2 − 4mk.

For m = 0, by the division by zero calculus we obtain the rea-
sonable solution α = 0 and β = −k/γ.
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We will consider the differential equation, for a constant K

y′ = Ky.

Then, we have the general solution

y(x) = y(0)eKt.

For the differential equation

y′ = Ky
(
1− y

R

)
,

we have the solution

y =
y(0)eKt

1 + y(0)(eKt−1)
R

.

If R = 0, then, by the division by zero, we obtain the previous
result, immediately.

We will consider the fundamental ordinary differential equa-
tion

x′′(t) = g − kx′(t)

with the initial conditions

x(0) = −h, x′(0) = 0. (9.9)

Then we have the solution

x(t) =
g

k
t+

g(e−kt − 1)

k2
− h.

Then, for k = 0, we obtain, immediately, by the division by zero
calculus

x(t) =
1

2
gt2 − h.

For the differential equation

x′′(t) = g − k(x′(t))2
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satisfying the same condition with (9.9), we obtain the solution

x(t) =
1

2k
log

(
e2t

√
kg + 1

)2
4e2t

√
kg

− h.

Then, for k = 0, we obtain

x(t) =
1

2
gt2 − h.

immediately, by the division by zero calculus.
For the differential equation

mx′′(t) = −mg − rx′(t),

the solution satisfying the conditions x(0) = x0, x
′(0) = v0 is

given by
x(t) = −g

r
mt+A+B exp

(
− r

m
t
)
,

with
A = x0 −B,B = −m

r

(m
r
g + v0

)
.

For r = 0, by the division by zero calculus, we have the reason-
able solution

x(t) = −1

2
gt+ v0t+ x0.

For the differential equation

x′′(t) = −g + k(x′(t))2

satisfying the initial conditions

x(0) = 0, x′(0) = V,

we have
x′(t) = −

√
g

k
tan(

√
kgt− α),

with

α = tan−1

√
k

g
V
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and the solution

x(t) =
1

k
log

cos
(√
kgt− α

)
cosα

.

Then we obtain for k = 0, by the division by zero calculus

x′(t) = −gt+ V

and
x(t) = −1

2
gt2 + V t.

We will consider the typical ordinary differential equation

mx′′(t) = mg −m(λx′(t) + µ(x′(t))2),

satisfying the initial conditions

x(0) = x′(0) = 0.

Then we have the solution

x(t) =
−λ+

√
λ2 + 4µg

2µ
t+

1

µ
log[(

−λ+
√
λ2 + 4µg

2µ
exp(−

√
λ2 + 4µgt)

+
λ+

√
λ2 + 4µg

2µ
)

µ√
λ2 + 4µg

].

Then, if µ = 0, we obtain, immediately, by the division by zero
calculus

x(t) =
g

λ
t+

1

λ2
ge−λt − g

λ2
.

Furthermore, if λ = 0, then we have

x(t) =
1

2
gt2.
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We can find many and many such examples. However, note
the following fact.

For the differential equation

y′′′ + a2y′ = 0,

we obtain the general solution, for a 6= 0

y = A sin ax+B cos ax+ C.

For a = 0, from this general solution, how can we obtain the
corresponding solution

y = Ax2 +Bx+ C,

naturally?
For the differential equation

y′ = aeλxy2 + afeλxy + λf,

we obtain a special solution, for a 6= 0

y = −λ
a
e−λx.

For a = 0, from this solution, how can we obtain the corre-
sponding solution

y = λfx+ C,

naturally?

9.8 Partial differential equations
For the partial differential equation

∂w

∂t
= a

∂2w

∂x2
+ bx

∂w

∂x
+ (cx+ d)w,

we have a special solution

w(x, t) = exp

[
−c
b
x+

(
d+

ac2

b2

)
t

]
.
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For b = 0, how will be the corresponding solution? If b = 0,
then c = 0 and

c

b
=

0

0
= 0,

and we obtain the corresponding solution.
For the partial differential equation

∂w

∂t
= a

∂2w

∂x2
+ (beβt + c)w,

we have special solutions

w(x, t) = (Ax+B) exp

[
b

β
eβt + ct

]
,

w(x, t) = A(x2 + 2at) exp

[
b

β
eβt + ct

]
,

and
w(x, t) = A exp

[
λx+ aλ2t+

b

β
eβt + ct

]
.

Then, we see that for β = 0, by the interpretation[
1

β
eβt
]
β=0

= t,

we can obtain the corresponding solution.
For the partial differential equation

∂w

∂t
= a

∂2w

∂x2
+ (bxeβx + c)w,

we have a special solution

w(x, t) = A exp

[
b

β
xeβt +

ab2

2β3
e2βt + ct

]
.

Then, for β = 0, by the interpretation[
1

βj
eβt
]
β=0

=
1

j!
tj ,
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we can obtain the corresponding solution.
However, the above properties will be, in general, compli-

cated.
For the partial differential equation

∂w

∂t
= a

∂2w

∂x2
+ bw,

we have the fundamental solution

w(x, t) =
1

2
√
πat

exp

(
− x2

4at
+ bt

)
.

For a = 0, we have the corresponding solution

w(x, t) = exp bt.

For the factor
1

2
√
πat

exp

(
− x2

4at

)
we have, for letting a→ 0,

δ(x),

meanwhile, at a = 0, by the division by zero calculus, we have
0 that is a solution of the corresponding equation for a = 0. So,
the reduction problem is a delicate open problem.

For the partial differential equation

∂w

∂t
= a

∂2w

∂x2
+ (−bx2 + ct+ d)w,

we have a special solution

w(x, t) = exp

[
1

2

√
b

a
x2 +

1

2
ct2 + (

√
ab+ d)t

]
.

For a = 0, how will be the corresponding solution? Since we
have the solution

w(x, t) = exp

[
−bx2t+ 1

2
ct2 + dt

]
,
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for the factor
1

2

√
b

a
x2

we have to have
−bx2t.

9.9 Hadamard’s example - ill-posed problems
The following example is famous with its ill-posed problem in
general inverse problems:

We will consider the initial value problem of the Laplace
operator ∆u = 0 satisfying the initial conditions

u(x, 0) = 0, uy(x, 0) = gn(x) =
sinnx

n2
.

Then, we obtain the solution

u(x, y) =
sinh y sinnx

n2
, n = 1, 2, 3, ....

Of course, for n = 0, we have the trivial solution, by the division
by zero calculus, because g0(x) = 0 and u(x, y) = 0.

9.10 Open problems
As important open problems, we would like to propose them
clearly. We have considered our mathematics around an iso-
lated singular point for analytic functions, however, we did not
consider mathematics at the singular point itself. At the isolated
singular point, we consider our mathematics with the limiting
concept, however, the limiting values to the singular point and
the values at the singular point in the sense of division by zero
calculus are, in general, different. By the division by zero cal-
culus, we can consider the values and differential coefficients at
the singular point. We thus have a general open problem dis-
cussing our mathematics on a domain containing the singular
point.

151



We referred to the reduction problem by concrete examples;
there we found the delicate property. For this interesting prop-
erty we expect some general theory.
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10 EUCLIDEAN SPACES AND
DIVISION BY ZERO

In this section, we will see the division by zero properties on
the Euclidean spaces. Since the impact of the division by zero
and division by zero calculus is widely expanded in elementary
mathematics, here, elementary topics will be introduced as the
first stage.

10.1 Broken phenomena of figures by area and vol-
ume

The strong discontinuity of the division by zero around the
point at infinity will appear as the destruction of various fig-
ures. These phenomena may be looked in many situations as
the universal one. However, the simplest cases are the disc and
sphere (ball) with their radius 1/κ. When κ → +0, the ar-
eas and volumes of discs and balls tend to +∞, respectively,
however, when κ = 0, they are zero, because they become the
half-plane and half-space, respectively. These facts may be also
looked by analytic geometry, as we see later. However, the re-
sults are clear already from the definition of the division by
zero.

The behavior of the space around the point at infinity may
be considered by that of the origin by the linear transform W =
1/z (see [2]). We thus see that

lim
z→∞

z =∞, (10.1)

however,
[z]z=∞ = 0, (10.2)

by the division by zero. Here, [z]z=∞ denotes the value of the
function W = z at the topological point at the infinity in one
point compactification by Aleksandrov. The difference of (10.1)
and (10.2) is very important as we see clearly by the function
W = 1/z and the behavior at the origin. The limiting value to
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the origin and the value at the origin are different. For surprising
results, we will state the property in the real space as follows:

lim
x→+∞

x = +∞, lim
x→−∞

x = −∞,

however,
[x]+∞ = 0, [x]−∞ = 0.

Of course, two points +∞ and −∞ are the same point as the
point at infinity. However, ± will be convenient in order to
show the approach directions. In [41], we gave many examples
for this property.

In particular, in z → ∞ in (10.1), ∞ represents the topo-
logical point on the Riemann sphere, meanwhile ∞ in the left
hand side in (10.1) represents the limit by means of the ϵ - δ
logic. That is, for any large number M , when we take for some
large number N , we have, for |z| > N , |z| > M.

10.2 Parallel lines
We write lines by

Lk : akx+ bky + ck = 0, k = 1, 2.

The common point is given by, if a1b2 − a2b1 6= 0; that is, the
lines are not parallel(

b1c2 − b2c1
a1b2 − a2b1

,
a2c1 − a1c2
a1b2 − a2b1

)
.

By the division by zero, we can understand that if a1b2−a2b1 =
0, then the common point is always given by

(0, 0),

even two lines are the same. This fact shows that the image of
the Euclidean space in Section 3 is right.

In particular, note that the concept of parallel lines is very
important in the Euclidean plane and non-Euclidean geometry.
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With our sense, there are no parallel lines and all lines pass the
origin. This will be our world on the Euclidean plane. However,
this property is not geometrical and has a strong discontinuity.
This surprising property may be looked also clearly by the polar
representation of a line.

We write a line by the polar coordinate

r =
d

cos(θ − α)
,

where d = OH > 0 is the distance of the origin O and the line
such that OH and the line is orthogonal and H is on the line, α
is the angle of the line OH and the positive x axis, and θ is the
angle of OP (P = (r, θ) on the line) from the positive x axis.
Then, if θ− α = π/2; that is, OP and the line is parallel and P
is the point at infinity, then we see that r = 0 by the division
by zero calculus; the point at infinity is represented by zero and
we can consider that the line passes the origin, however, it is in
a discontinuous way.

This will mean simply that any line arrives at the point at
infinity and the point is represented by zero and so, for the line
we can add the point at the origin. In this sense, we can add
the origin to any line as the point of the compactification of
the line. This surprising new property may be looked in our
mathematics globally.

The distance d from the origin to the line determined by the
two planes

Πk : akx+ bky + ckz = 1, k = 1, 2,

is given by

d =

√
(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2

(b1c2 − b2c1)2 + (c1a2 − c2a1)2 + (a1b2 − a2b1)2
.

If the two lines are coincident, then, of course, d = 0. However,
if two planes are parallel, by the division by zero, d = 0. This
will mean that any plane contains the origin as in a line.
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10.3 Tangential lines and tan π
2
= 0

We looked the very fundamental and important formula tan π
2 =

0 in Section 6. In this subsection, for its importance we will
furthermore see its various geometrical meanings.

We consider the high tan θ
(
0 ≤ θ ≤ π

2

)
that is given by the

common point of two lines y = (tan θ)x and x = 1 on the (x, y)
plane. Then,

tan θ −→∞; θ −→ π

2
.

However,
tan

π

2
= 0,

by the division by zero. The result will show that, when θ =
π/2, two lines y = (tan θ)x and x = 1 do not have a common
point, because they are parallel in the usual sense. However, in
the sense of the division by zero, parallel lines have the common
point (0, 0). Therefore, we can see the result tan π

2 = 0 following
our new space idea.

We consider general lines represented by

ax+ by + c = 0, a′x+ b′y + c′ = 0.

The gradients are given by

k = −a
b
, k′ = −a

′

b′
,

respectively. In particular, note that if b = 0, then k = 0, by
the division by zero.

If kk′ = −1, then the lines are orthogonal; that is,

tan
π

2
= 0 = ± k − k′

1 + kk′
,

which shows that the division by zero 1/0 = 0 and orthogonality
meets in a very good way.
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Furthermore, even in the case of polar coordinates x =
r cos θ, y = r sin θ, we can see the division by zero

tan
π

2
=
y

0
= 0.

In particular, note the following fact.
From the expansion

tan z = −
+∞∑

ν=−∞

(
1

z − (2ν − 1)π/2
+

1

(2ν − 1)π/2

)
,

tan
π

2
= 0.

The division by zero may be looked even in the rotation of
the coordinates.

We will consider a 2 dimensional curve

ax2 + 2hxy + by2 + 2gx+ 2fy + c = 0

and a rotation defined by

x = X cos θ − Y sin θ, y = X sin θ + Y cos θ.

Then, we write, by inserting these (x, y)

AX2 + 2HXY +BY 2 + 2GX + 2FY + C = 0.

Then,
H = 0⇐⇒ tan 2θ =

2h

a− b
.

If a = b, then, by the division by zero,

tan
π

2
= 0, θ =

π

4
.
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For h2 > ab, the equation

ax2 + 2hxy + by2 = 0

represents 2 lines and the angle θ made by two lines is given by

tan θ = ±2
√
h2 − ab
a+ b

.

If h2 − ab = 0, then, of course, θ = 0. If a+ b = 0, then, by the
division by zero, θ = π/2 from tan θ = 0.

For a hyperbolic function

x2

a2
− y2

b2
= 1; a, b > 0

the angle θ made by two asymptotic lines y = ±(b/a)x is given
by

tan θ =
2(b/a)

1− (b/a)2
.

If a = b, then θ = π/2 from tan θ = 0.

For a triangle OAB (O(0, 0), A(1, 0), B(0, tan θ), θ = ∠OAB),
we consider the escribed circle

(x+ r)2 + y2 = r2

of A. Then, from
r

r + 1
= tan

θ

2
,

we have
r =

tan θ
2

1− tan θ
2

.

For θ = π/2, we have the reasonable result

r =
1

1− 1
= 0.
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For a line
x cos θ + y sin θ − p = 0

and for data (xj , yj), the minimum of
∑n

j=1 d
2
j for the distance

dj of the line and the point (xj , yj) is attained for the case

tan 2θ =
2γxyσxσy
σ2x − σ2y

,

where
γxy =

n
∑

j xjyj − (
∑

j xj)(
∑

j yj)

n2σxσy

and
σx =

1

n

√
n
∑
j

x2j − (
∑
j

xj)2.

If σ2x = σ2y , then θ = π/4 from tan 2θ = 0.
We consider the unit circle with its center at the origin on the

(x, y) plane. We consider the tangential line for the unit circle
at the point that is the common point of the unit circle and the
line y = (tan θ)x

(
0 ≤ θ ≤ π

2

)
. Then, the distance Rθ between

the common point and the common point of the tangential line
and x-axis is given by

Rθ = tan θ.

Then,
R0 = tan 0 = 0,

and
tan θ −→∞; θ −→ π

2
.

However,
Rπ/2 = tan

π

2
= 0.

This example shows also that by the stereographic projection
mapping of the unit sphere with its center at the origin (0, 0, 0)
onto the plane, the north pole corresponds to the origin (0, 0).
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In this case, we consider the orthogonal circle CRθ
with the

unit circle through at the common point and the symmetric
point with respect to the x-axis with its center ((cos θ)−1, 0).
Then, the circle CRθ

is as follows:
CR0 is the point (1, 0) with curvature zero, and CRπ/2

(that
is, when Rθ =∞, in the common sense) is the y-axis and its cur-
vature is also zero. Meanwhile, by the division by zero calculus,
for θ = π/2 we have the same result, because (cos(π/2))−1 = 0.

Note that from the expansion

1

cos z
= 1 +

+∞∑
ν=−∞

(−1)ν
(

1

z − (2ν − 1)π/2
+

2

(2ν − 1)π

)
,

(
1

cos z

)(π
2

)
= 1− 4

π

∞∑
ν=0

(−1)ν

2ν + 1
= 0.

The points (cos θ, 0) and ((cos θ)−1, 0) are the symmetric points
with respect to the unit circle, and the origin corresponds to the
origin.

In particular, the formal calculation√
1 +R2

π/2 = 1

is not good. The identity cos2 θ + sin2 θ = 1 is valid always,
however 1+tan2 θ = (cos θ)−2 is not valid formally for θ = π/2.

This equation should be written as

cos2 θ

cos2 θ
+ tan2 θ = (cos θ)−2,

that is valid always.
Of course, as analytic functions, in the sense of the division

by zero calculus, the identity is valid for θ = π/2.
From the point at

x =
1

cos θ
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when we look the unit circle, we can see that the length L(x) of
the arc that we can see is given by

L(x) = 2 cos−1 1

x
.

For θ = π/2 that is for x = 0 we see that L(x) = π.
We fix B(0, 1) and let ∠ABO = θ with A(tan θ, 0). Let H

be the point on the line BA such that two lines OH and AB are
orthogonal. Then we see that

AH =
sin2 θ

cos θ
.

Note that for θ = π/2, AH = 0.
Note that from the expansion

1

cos2 z
=

+∞∑
ν=−∞

1

(z − (2ν − 1)π/2)2
,

(
1

cos2 z

)(π
2

)
=

2

π2

∞∑
ν=1

1

ν2
=

1

3
.

On the point (p, q)(0 ≤ p, q ≤ 1) on the unit circle, we
consider the tangential line Lp,q of the unit circle. Then, the
common points of the line Lp,q with x-axis and y-axis are (1/p, 0)
and (0, 1/q), respectively. Then, the area Sp of the triangle
formed by three points (0, 0), (1/p, 0) and (0, 1/q) is given by

Sp =
1

2pq
.

Then,
p −→ 0; Sp −→ +∞,

however,
S0 = 0

(H. Michiwaki: 2015.12.5.). We denote the point on the unit
circle on the (x, y) plane with (cos θ, sin θ) for the angle θ with
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the positive real line. Then, the tangential line of the unit circle
at the point meets at the point (Rθ, 0) for Rθ = [cos θ]−1 with
the x-axis for the case θ 6= π/2. Then,

θ
(
θ <

π

2

)
→ π

2
=⇒ Rθ → +∞,

θ
(
θ >

π

2

)
→ π

2
=⇒ Rθ → −∞,

however,
Rπ/2 =

[
cos
(π
2

)]−1
= 0,

by the division by zero. We can see the strong discontinuity of
the point (Rθ, 0) at θ = π/2 (H. Michiwaki: 2015.12.5.).

The line through the points (0, 1) and (cos θ, sin θ) meets the
x axis with the point (Rθ, 0) for the case θ 6= π/2 by

Rθ =
cos θ

1− sin θ
.

Then,
θ
(
θ <

π

2

)
→ π

2
=⇒ Rθ → +∞,

θ
(
θ >

π

2

)
→ π

2
=⇒ Rθ → −∞,

however,
Rπ/2 = 0,

by the division by zero. We can see the strong discontinuity of
the point (Rθ, 0) at θ = π/2.

Note that
cosx

1− sinx
= − 2

x− x
2

+
1

6
(x− x

2
) + · · ·.

From
1

1− sinx
=

2

(x− x
2 )

2
+

1

6
+

1

120
(x− x

2
)2 + · · ·,
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it is
1

6
,

at π/2, meanwhile, note also that[
1− sin

(π
2

)]−1
= 0.

For a smooth curve C : r = r(θ), r 6= 0, we consider the
tangential line at P and a near point Q on the curve C. Let
H be the nearest point on the line OP, O is the pole of the
coordinate and δθ is the angle for the line OP to the line OG.
Then, we have

tanΘ := lim
δθ→0

QH

PH
=
r(θ)

r′(θ)
.

If r′(θ0) = 0, then tanΘ = 0 and Θ = π/2, and the result is
reasonable.

For the parabolic equation y2 = 4ax, a > 0, at a point (x, y),
the normal line shadow on the x-axis is given by

|yy′| = 2a.

At the origin, we have, from y′(0) = 0,

|yy′| = 0.

For the equation

xmyn = am+n, a,m, n > 0,

let P be a point (x, y) on the curve. Let T (x, x + (n/m)x) be
the x cut of the tangential line of the curve and put M(x, 0).
Then, we have

TM : OM = − n
m
.

This formula is valid for the cases n = 0 and m = 0, by the
division by zero. Note that for both lines x = a and y = a, the
gradients are zero and y′ = 0.
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10.4 Two circles
We consider two circles with their radii a, b with their centers
(a, 0); a > 0 and (−b, 0); b > 0, respectively. Then, the external
common tangents La,b (we assume that a < b and that La,b is
not the y axis) has the common point with the x-axis at (Ra, 0)
which is given by, by fixing b

Ra =
2ab

b− a
. (10.3)

We consider the circle CRa with its center at (Ra, 0) with its
radius Ra. Then,

a→ b =⇒ Ra →∞,

however, when a = b, then we have Rb = −2b by the division
by zero calculus, from the identity

2ab

b− a
= −2b− 2b2

a− b
.

Meanwhile, when we consider (10.3) as

Ra =
−1
a− b

· 2ab,

we have, for a = b, Rb = 0. It means that the circle CRb
is the

y axis with its curvature zero through the origin (0, 0).
The above formulas will show a strong discontinuity for the

change of a and b from a = b (H. Okumura: 2015.10.29.).
We denote the circles Sj :

(x− aj)2 + (y − bj)2 = r2j .

Then, the common point (X,Y ) of the co- and exterior tangen-
tial lines of the circles Sj for j = 1, 2, is given by

(X,Y ) =

(
r1a2 − r2a1
r1 − r2

,
r1b2 − r2b1
r1 − r2

)
.
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We will fix the circle S2. Then, from the expansion

r1a2 − r2a1
r1 − r2

=
r2(a2 − a1)
r1 − r2

+ a2 (10.4)

for r1 = r2, by the division by zero, we have

(X,Y ) = (a2, b2).

Meanwhile, when we consider (10.4) as

r1a2 − r2a1
r1 − r2

=
1

r1 − r2
· (r1a2 − r2a1),

we obtain that
(X,Y ) = (0, 0),

that is reasonable. However, both cases, the results show a
strong discontinuity.

10.5 Newton’s method
The Newton’s method is fundamental when we look for the so-
lutions for some general equation f(x) = 0 numerically and
practically. We will refer to its prototype case.

We will assume that a function y = f(x) belongs to C1 class.
We consider the sequence {xn} for n = 0, 1, 2, . . . , n, . . . , defined
by

xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2, . . . .

When f(xn) = 0, we have

xn+1 = xn, (10.5)

in the reasonable way. Even the case f ′(xn) = 0, we have also
the reasonable result (10.5), by the division by zero.
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10.6 Halley’s method
As in the Newton’s method, in order to look for the solution of
the equation f(x) = 0, we consider the series

xn+1 = xn −
2f(xn)f

′(xn)

a[f ′(xn)]2 − f(xn)f ′′(xn)

and
xn+1 = xn −

f(xn)

f ′(xn)

[
1− f(xn)

f ′(xn)

f ′′(xn)

2f ′(xn)

]−1

.

If f(xn) = 0, the processes stop and there is no problem. Even
the case f ′(xn) = 0, the situation is similar.

10.7 Cauchy’s mean value theorem
For the Cauchy mean value theorem; that is, for f, g ∈ Differ(a, b),
differentiable, and ∈ C0[a, b], continuous and if g(a) 6= g(b) and
f ′(x)2 + g′(x)2 6= 0, then there exists ξ ∈ (a, b) satisfying that

f(a)− f(b)
g(a)− g(b)

=
f ′(ξ)

g′(ξ)
,

we do not need the assumptions g(a) 6= g(b) and f ′(x)2 +
g′(x)2 6= 0, by the division by zero. Indeed, if g(a) = g(b),
then, by the Rolle theorem, there exists ξ ∈ (a, b) such that
g′(ξ) = 0. Then, both terms are zero and the equality is valid.

For f, g ∈ C2[a, b], there exists ξ ∈ (a, b) satisfying

f(b)− f(a)− (b− a)f ′(a)
g(b)− g(a)− (b− a)g′(a)

=
f ′′(a)

g′′(a)
.

Here, we do not need the assumption

g(b)− g(a)− (b− a)g′(a) 6= 0,

by the division by zero.
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For a function f ∈ C2 satisfying f(α) = 0, f ′(α) > 0 and for
a small k, for the solution x = α+ δ, we obtain

δ ∼
−f ′(α) +

√
f ′(α)2 + 2kf ′′(α)

f ′′(α)
.

If here f ′′(α) = 0, then, the team should be replaced by

k

f ′(α)

([91], 71 page.). This modification can be derived by the division
by zero calculus, because in

√
A+ 2kx

x
,

for x = 0
k√
A
.

10.8 Length of tangential lines
We will consider the inversion A(1/x, 0) of a point X(x, 0), 0 <
x < 1 with respect to the unit circle with its center the origin.
Then the length T (x) of the tangential line AB (B(x,

√
1− x2))

is given by
T (x) =

1

x

√
1− x2.

For x = 0, by the division by zero calculus, we have

T (0) = 0

that was considered as +∞.
We will consider a function y = f(x) of C1 class on the real

line. We consider the tangential line through (x, f(x))

Y = f ′(x)(X − x) + f(x).
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Then, the length (or distance) d(x) between the point (x, f(x))
and

(
x− f(x)

f ′(x) , 0
)

is given by, for f ′(x) 6= 0

d(x) = |f(x)|

√
1 +

1

f ′(x)2
.

How will be the case f ′(x∗) = 0? Then, the division by zero
shows that

d(x∗) = |f(x∗)|.

Meanwhile, the x axis point (Xt, 0) of the tangential line at
(x, y) and y axis point (0, Yn) of the normal line at (x, y) are
given by

Xt = x− f(x)

f ′(x)

and
Yn = y +

x

f ′(x)
,

respectively. Then, if f ′(x) = 0, we obtain the reasonable re-
sults:

Xt = x, Yn = y.

For a smooth curve r = f(θ) with polar coordinate with
respect to the origin O, on a point P (r, θ), we consider the
line that is orthogonal to the line OP, and let T and N be the
common points with the line and the tangential line and the
normal line at the point P, respectively. Then, we have

OT =
r2

r′
,

ON = r′,

and
PT =

r

r′

√
r2 + r′2.

Consider the circle case r = a, then we have r′ = 0. Then, we
see that the above three formulas are zero.
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On a fixed circle

(x− r)2 + (y − r)2 = r2, r > 0,

we consider the tangential line with its common points A and
B with the x positive line and y positive line, respectively. For
the triangle ABC, C is the origin, we have the identity

r

sin A
2

=
√
2c sin

B

2
.

If A = 0, then we have the identity
r

sin 0
=
√
2 · 0 · sin π

4
= 0.

On the same situation, we consider the tangential line at the
point T = (

√
r2 − h2, h), h > 0 and let L be the length L = TA.

Then, we have
L =

rh√
r2 − h2

.

For h = r, by the division by zero calculus, we have that L = 0
(V. V. Puha: 2018.7.3.06:19).

10.9 Curvature and center of curvature
We will assume that a function y = f(x) is of class C2. Then,
the curvature radius ρ and the center O(x, y) of the curvature
at point (x, f(x)) are given by

ρ(x, y) =
(1 + (y′)2)3/2

y′′

and
O(x, y) =

(
x− 1 + (y′)2

y′′
y′, y +

1 + (y′)2

y′′

)
,

respectively. Then, if y′′ = 0, we have the results

ρ(x, y) = 0
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and
O(x, y) = (x, y),

by the division by zero. They are reasonable.
We will consider a curve r = r(s), s = s(t) of class C2. Then,

v =
dr

dt
, t =

dr(s)

ds
, v =

ds

dt
,
dt(s)

ds
=

1

ρ
n,

by the principal normal unit vector n. Then, we see that

a =
dv

dt
=
dv

dt
t+

v2

ρ
n.

If ρ(s0) = 0: (consider a line case), then

a(s0) =

[
dv

dt
t

]
s=s0

and [
v2

ρ

]
s=s0

=∞

will be funny. It will be the zero.

Sciacci’s theorem: When we set h = v/ρ, we have, for the
distance p from the origin to the tangential line at P and the
radial component and tangential component of a at P

ar =
h2rρ

p2

and
at =

h

p2
dh

ds
.

For the curvature zero, of course, ar = 0.

170



10.10 n = 2, 1, 0 regular polygons inscribed in a disc
We consider n regular polygons inscribed in a fixed disc with its
radius a. Then we note that their area Sn and the length Ln of
the sum of the sides are given by

Sn =
na2

2
sin

2π

n

and
Ln = 2na sin

π

n
,

respectively. For n ≥ 3, the results are clear.
For n = 2, we will consider two diameters that are the same.

We can consider it as a generalized regular polygon inscribed in
the disc as a degenerate case. Then, S2 = 0 and L2 = 4a, and
the general formulas are valid.

Next, we will consider the case n = 1. Then the correspond-
ing regular polygon is a just diameter of the disc. Then, S1 = 0
and L1 = 0 that will mean that any regular polygon inscribed
in the disc may not be formed and so its area and length of the
side are zero.

For n = 1 triangle, if 1 means one side, then we can consider
as in the above, however, if we consider 1 as one vertex, the
above situation may be considered as one point on the circle
which will mean S1 = L1 = 0.

Now we will consider the case n = 0. Then, by the division
by zero calculus, we obtain that S0 = πa2 and L0 = 2πa. Note
that they are the area and the length of the disc. How to under-
stand the results? Imagine contrary n tending to infinity, then
the corresponding regular polygons inscribed in the disc tend
to the disc. Recall our new idea that the point at infinity is
represented by 0. Therefore, the results say that n = 0 regular
polygons are n = ∞ regular polygons inscribed in the disc in
a sense and they are the disc. This is our interpretation of the
theorem:

Theorem 9.1 n = 0 regular polygons inscribed in a disc are
the whole disc.
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Note that the radius rn of the inscribed circle in the n regular
polygon

rn = a cos
π

n
.

For n → ∞, rn → a, however, for n = 0, r0 = a (H. Okumura:
2019.2.1.).

In addition, note that each inner angle An of a general n
regular polygon inscribed in a fixed disc with its radius a is
given by

An =

(
1− 2

n

)
π. (10.6)

The circumstances are similar for n regular polygons circum-
scribed in the disc, because the corresponding data are given by

Sn = na2 tan
π

n

and
Ln = 2na tan

π

n
,

and (10.6), respectively.
In connection with the interesting example, we will refer to

another example.
On a disc with radius R, we consider n regular polygon

inscribed the disc A1A2 · · · An. Let rj be the radius of the
inscribed circle in the triangle AjAj+1Aj+2. Then, we have

In = r1 + r2 + · · ·+ rn−2 = 2R
(
1− n sin2 π

2n

)
.

For n→∞, we have

lim
n→∞

In = 2R.

Meanwhile, by the division by zero calculus, we have

I0 = 2R.
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10.11 Our life figure
As an interesting figure which shows an interesting relation be-
tween 0 and infinity, we will consider a sector ∆α on the complex
z = x+ iy plane

∆α =
{
| arg z| < α; 0 < α <

π

2

}
.

We will consider a disc inscribed in the sector ∆α whose center
(k, 0) with its radius r. Then, we have

r = k sinα.

Then, note that as k tends to zero, r tends to zero, meanwhile
k tends to +∞, r tends to +∞. However, by our division by
zero calculus, we see that immediately

[r]r=∞ = 0.

On the sector, we see that from the origin as the point 0, the
inscribed discs are increasing endlessly, however their final disc
reduces to the origin suddenly - it seems that the whole process
looks like our life in the viewpoint of our initial and final.

10.12 H. Okumura’s example
The suprising example by H. Okumura will show a new phe-
nomenon at the point at infinity.

On the sector ∆α, we shall change the angle and we consider
a fixed circle Ca, a > 0 with its radius a inscribed in the sectors.
We see that when the circle tends to +∞, the angles α tend to
zero. How will be the case α = 0? Then, we will not be able to
see the position of the circle. Surprisingly enough, then Ca is
the circle with its center at the origin 0. This result is derived
from the division by zero calculus for the formula

k =
a

sinα
.
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The two lines arg z = α and arg z = −α were tangential lines
of the circle Ca and now they are the positive real line. The
gradient of the positive real line is of course zero. Note here that
the gradient of the positive y axis is zero by the division by zero
calculus that means tan π

2 = 0. Therefore, we can understand
that the positive real line is still a tangential line of the circle
Ca.

This will show some great relation between zero and infin-
ity. We can see some mysterious property around the point at
infinity.

On the horn torus models of Puha and Däumler, the example
in Subsection 9.11 is clear.

Meanwhile, on the Okumura example, note that the series
of discs tending to the point at infinity converges to the crucial
point of the horm torus on the upper part. However, the disc
with its center at the origin, of course, is mapped to the lower
part of the horn torus. Therefore, we see the surprising result:

Conclusion: The Okumura’s disc series can beyond
the crucial point of Däumler-Puha’s horn torus models
for the Riemann sphere.

These three subsections were taken from [41].
In connection with the examples in Subsections 9.11 and

9.12, we note the following example.
We consider the circles, for fixed r > 0

(x− a)2 + y2 = r2.

For the case a = 0, we have

x2 + y2 = r2.

Meanwhile, from

x2

a
− 2x+ a+

y2

a
=
r2

a
,
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by the division by zero, we have that

x = 0.

Similarly we consider the circles

(x− r)2 + (y − r)2 = r2.

First, for r = 0, the cirlcle is a point (0, 0), and from the identity

x2 + y2

r2
− 2(x+ y)

r
+
r2

r2
= 0

and from r = 0, we have the nonsense result. However, from
the identity

x2 + y2

r
− 2(x+ y) + r = 0

and from r = 0, we have the interesting result

y = −x.

10.13 Interpretation by analytic geometry
The results in Subsection 9.1 may be derived beautifully by
analytic geometry and matrix theory.

We write lines by

Lk : akx+ bky + ck = 0, k = 1, 2, 3.

The area S of the triangle surrounded by these lines is given by

S = ±1

2
· 42

D1D2D3
,

where 4 is ∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
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and Dk is the co-factor of 4 with respect to ck. Dk = 0 if
and only if the corresponding lines are parallel. 4 = 0 if and
only if the three lines are parallel or they have a common point.
We can see that the degeneracy (broken) of the triangle may be
stated by S = 0 beautifully, by the division by zero.

Similarly we write lines by

Mk : ak1x+ ak2y + a3k = 0, k = 1, 2, 3.

The area S of the triangle surrounded by these lines is given by

S =
1

A11A22A33

∣∣∣∣∣∣
A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣
where Akj is the co-factor of akj with respect to the matrix [akj ].
We can see that the degeneracy (broken) of the triangle may be
stated by S = 0 beautifully, by the division by zero.

For a function

S(x, y) = a(x2 + y2) + 2gx+ 2fy + c, (10.7)

the radius R of the circle S(x, y) = 0 is given by

R =

√
g2 + f2 − ac

a2
.

If a = 0, then the area πR2 of the disc is zero, by the division
by zero. In this case, the circle is a line (degenerated).

The center of the circle (10.7) is given by(
−g
a
,−f

a

)
.

Therefore, the center of a general line

2gx+ 2fy + c = 0

may be considered as the origin (0, 0), by the division by zero.
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On the complex z plane, a circle containing a line is repre-
sented by the equation

azz + αz + αz + c = 0,

for a, c : real and ac ≤ αα. Then the center and the radius are
given by

−α
a

and √
αα− ac
a

,

respectively. If a = 0, then it is a line with center (0, 0) with
radius 0, by the division by zero. The curvature of the line is,
of course, zero, by the division by zero.

We consider the functions

Sj(x, y) = aj(x
2 + y2) + 2gjx+ 2fjy + cj .

The distance d of the centers of the circles S1(x, y) = 0 and
S2(x, y) = 0 is given by

d2 =
g21 + f21
a21

− 2
g1g2 + f1f2

a1a2
+
g22 + f22
a22

.

If a1 = 0, then by the division by zero

d2 =
g22 + f22
a22

.

Then, S1(x, y) = 0 is a line and its center is the origin (0, 0).
Therefore, the result is very reasonable.

The distance d between two lines given by

x− aj
L1

=
y − bj
Mj

=
z − cj
Nj

, j = 1, 2,

is given by
d =
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∣∣∣∣∣∣
a2 − a1 b2 − b1 c2 − c1
L1 M1 N1

L2 M2 N2

∣∣∣∣∣∣√
(MlN2 −M2N1)2 + (NlL2 −N2L1)2 + (LlM2 − L2M1)2

.

If two lines are parallel, then we have d = 0.

10.14 Interpretation with volumes
We write four planes by

πk : akx+ bky + ckz + dk = 0, k = 1, 2, 3, 4.

The volume V of the tetrahedron surrounded by these planes is
given by

V = ±1

6
· 42

D1D2D3D4
,

where 4 is ∣∣∣∣∣∣∣∣
a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

∣∣∣∣∣∣∣∣
and Dk is the co-factor of 4 with respect to dk. Dk = 0 if and
only if two planes of the corresponding three planes are parallel.
4 = 0 if and only if the four planes πk contain four lines Lk

(for each k, respectively) that are parallel or have a common
line. We can see that the degeneracy of the tetrahedron may be
considered by V = 0 beautifully, by the division by zero.

This subsection was taken from [41].

10.15 Interpretation for minus area
We first recall the typical example for the area of a triangle.
The area S of the triangle P1P2P3 with Pj(xj , yj), j = 1, 2, 3 is
given by

S = ±1

2
·

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ .
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For the sigh, when we consider P1, P2, P3 for the direction of
the triangle, + and in the converse (reverse) direction, −. The
property shows a beautiful relation of geometry and algebra.
We can see many and many examples as a beautiful property.

Here, we will give a reason why such a relation exists. In
this concrete case, we can say surprisingly that the minus area
shows the area of the outside of the triangle in a new sense
that is derived by the division by zero.

Since a general result and a special case are in the same
situation, we willl state our conclusion in the special case.

We consider a large disc containing the triangle P1P2P3 with
radius R with center at the origin. Then, the area S(R) of {
{x2 + y2 < R2} \ 4P1P2P3} is given by

S(R) = πR2 − S.

Of course,
lim

R→∞
S(R) = +∞,

However, by the division by zero, for R =∞, we obtain

S(∞) = −S,

that means the area of the outside of the triangle.
This subsection was taken from [83].
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11 APPLICATIONS TO WASAN GEOM-
ETRY

For the sake of the great contributions to Wasan geometry by
H. Okumura, we found new interesting results as applications of
the division by zero calculus. We will introduce typical results,
however, the results and their impacts will create some new
fields in mathematics.

11.1 Circle and line
We will consider a fixed circle x2 + (y − b)2 = b2, b > 0. For a
taching circle with this circle and the x axis is represented by

(x− 2
√
ab)2 + (y − a)2 = a2.

Then, we have

x2 + y2√
a
− 4
√
bx = 2

√
a(y − 2b)

and
x2 + y2

a
− 4

√
b

a
x = 2(y − 2b).

Then, by the division by zero, we have the reasonable results
the origin, that is the point circle of the origin, the y axis and
the line y = 2b, respectively (H. Okumura: 2017.10.13.).

See [50] for furthermore results.

11.2 Three externally touching circles
For real numbers z, and a, b > 0, the point (0, 2

√
ab/z) is de-

noted by Vz. H. Okumura and M. Watanabe gave the theorem
in [59]:

Theorem 7. The circle touching the circle α: (x−a)2+y2 =
a2 and the circle β: (x + b)2 + y2 = b2 at points different from
the origin O and passing through Vz±1 is represented by
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(
x− b− a

z2 − 1

)2

+

(
y − 2z

√
ab

z2 − 1

)2

=

(
a+ b

z2 − 1

)2

(11.1)

for a real number z 6= ±1.
The common external tangents of α and β can be expressed

by the equations

(a− b)x∓ 2
√
aby + 2ab = 0. (11.2)

Anyhow the authors give the exact representation with a pa-
rameter of the general circles touching with two circles touching
each other. The common external tangents may be looked as
circles touching for the general circles (as we know we can con-
sider circles and lines as same ones in complex analysis or with
the stereographic projection or in the representation of a cir-
cle by the equation), however, they stated in the proof of the
theorem that the common external tangents are obtained by
the limiting z → ±1. However, its logic will have a delicate
problem.

Following our concept of the division by zero calculus, we
will consider the case z2 = 1 for the singular points in the
general parametric representation of the touching circles.

11.2.1 Results

First, for z = 1 and z = −1, respectively by the division by zero
calculus, we have from (10.1), surprisingly

x2 +
b− a
2

x+ y2 ∓
√
aby − ab = 0, (11.3)

respectively.
Secondly, multiplying (10.1) by (z2 − 1), we immediately

obtain surprisingly (10.2) for z = 1 and z = −1, respectively by
the division by zero calculus.
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In the usual way, when we consider the limiting z → ∞
for (10.1), we obtain the trivial result of the point circle of the
origin. However, the result may be obtained by the division by
zero calculus at w = 0 by setting w = 1/z.

11.2.2 On the circle appeared

The circle (10.3) meets the circle α in two points

Pa

(
2rA, 2rA

√
a

b

)
, Qa

(
2ab

9a+ b
,−6a

√
ab

9a+ b

)
,

where rA = ab/(a+ b). Also it meets β in points

Pb

(
−2rA, 2rA

√
b

a

)
, Qb

(
−2ab
a+ 9b

,−6b
√
ab

a+ 9b

)
.

The line PaPb is the common tangential of two circles α and β on
the upper half plane. The lines PaQa and PbQb intersect at the
point R :

(
0,−
√
ab
)
, which lies on the remaining tangentials

of α and β. Furthermore, the circle (10.3) is orthogonal to the
circle with center R passing through the origin.

The source of this subsection is [63].

11.3 The Descartes circle theorem
We recall the famous and beautiful theorem ([31, 89]):

Theorem (Descartes). Let Ci (i = 1, 2, 3) be circles
touching to each other of radii ri. If a circle C4 touches the
three circles, then its radius r4 is given by

1

r4
=

1

r1
+

1

r2
+

1

r3
± 2

√
1

r1r2
+

1

r2r3
+

1

r3r1
. (11.4)

As well-known, circles and lines may be looked as the same
ones in complex analysis, in the sense of stereographic projection
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and with many reasons. Therefore, we will consider whether
the theorem is valid for line cases and point cases for circles.
Here, we will discuss this problem clearly from the division by
zero viewpoint. The Descartes circle theorem is valid except for
one case for lines and points for the three circles and for one
exception case, we can obtain very interesting results, by the
division by zero calculus.

We would like to consider all cases for the Descartes theorem
for lines and point circles, step by step.

11.3.1 One line and two circles case

We consider the case in which the circle C3 is one of the external
common tangents of the circles C1 and C2. This is a typical case
in this paper. We assume that r1 ≥ r2. We now have r3 = 0 in
(11.4). Hence

1

r4
=

1

r1
+

1

r2
+
1

0
±2
√

1

r1r2
+

1

r2 · 0
+

1

0 · r1
=

1

r1
+

1

r2
±2
√

1

r1r2
.

This implies
1
√
r4

=
1
√
r1

+
1
√
r2

in the plus sign case. The circle C4 is the incircle of the curvi-
linear triangle made by C1, C2 and C3. In the minus sign case
we have

1
√
r4

=
1
√
r2
− 1
√
r1
.

In this case C2 is the incircle of the curvilinear triangle made
by the other three.

Of course, the result is known. The result was also well-
known in Wasan geometry [97] with the Descartes circle theorem
itself.
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11.3.2 Two lines and one circle case

In this case, the two lines have to be parallel, and so, this case is
trivial, because then other two circles are the same size circles,
by the division by zero 1/0 = 0.

11.3.3 One point circle and two circles case

This case is another typical case for the theorem. Intuitively,
for r3 = 0, the circle C3 is the common point of the circles C1

and C2. Then, there does not exist any touching circle of the
three circles Cj ; j = 1, 2, 3.

For the point circle C3, we will consider it by limiting of
circles attaching to the circles C1 and C2 to the common point.
Then, we will examine the circles C4 and the Descartes theorem.

In Theorem 7, by setting z = 1/w, we will consider the case
w = 0; that is, the case z = ∞ in the classical sense; that is,
the circle C3 is reduced to the origin.

We look for the circles C4 attaching with three circles Cj ; j =
1, 2, 3. We set

C4 : (x− x4)2 + (y − y4)2 = r24. (11.5)

Then, from the touching property we obtain:

x4 =
r1r2(r2 − r1)w2

D
,

y4 =
2r1r2

(√
r1r2 + (r1 + r2)w

)
w

D

and
r4 =

r1r2(r1 + r2)w
2

D
,

where

D = r1r2 + 2
√
r1r2(r1 + r2)w + (r21 + r1r2 + r22)w

2.
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By inserting these values to (11.5), we obtain

f0 + f1w + f2w
2 = 0,

where
f0 = r1r2(x

2 + y2),

f1 = 2
√
r1r2

(
(r1 + r2)(x

2 + y2)− 2r1r2y
)

and

f2 = (r21+r1r2+r
2
2)(x

2+y2)+2r1r2(r2−r1)x−4(r1+r2)y+4r21r
2
2.

By using the division by zero calculus for w = 0, we obtain, for
the first, for w = 0, the second by setting w = 0 after dividing
by w and for the third case, by setting w = 0 after dividing by
w2,

x2 + y2 = 0, (11.6)

(r1 + r2)(x
2 + y2)− 2r1r2y = 0 (11.7)

and

(r21 + r1r2 + r22)(x
2 + y2) + 2r1r2(r2 − r1)x (11.8)

−4r1r2(r1 + r2)y + 4r21r
2
2 = 0.

Note that (11.7) is the circle with the radius
r1r2
r1 + r2

(11.9)

and (11.8) is the circle whose radius is

r1r2(r1 + r2)

r21 + r1r2 + r22
.

When the circle C3 is reduced to the origin, of course, the
inscribed circle C4 is reduced to the origin, then the Descartes
theorem is not valid. However, by the division by zero calculus,

185



then the origin of C4 is changed suddenly for the cases (11.6),
(11.7) and (11.8), and for the circle (11.7), the Descartes theo-
rem is valid for r3 = 0, surprisingly.

Indeed, in (11.4) we set ξ = √r3, then (11.4) is as follows:

1

r4
=

1

r1
+

1

r2
+

1

ξ2
± 2

1

ξ

√
ξ2

r1r2
+

(
1

r1
+

1

r2

)
,

and so, by the division by zero calculus at ξ = 0, we have

1

r4
=

1

r1
+

1

r2

which is (11.9). Note, in particular, that the division by zero
calculus may be applied in many ways and so, for the results
obtained should be examined for some meanings. This circle
(11.7) may be looked a circle touching the origin and two circles
C1 and C2, because by the division by zero calculus

tan
π

2
= 0,

that is a popular property.
Meanwhile, the circle (11.8) is the attaching circle with the

circles C1, C2 and the beautiful circle with its center ((r2−r1), 0)
with its radius r1 + r2. Each of the areas surrounded by three
circles C1, C2 and the circle of radius r1+r2 is called an arbelos,
and the circle (11.7) is the famous Bankoff circle of the arbelos.
For r3 = −(r1+r2), from the Descartes identity (10.4), we have
(10.4). That is, when we consider that the circle C3 is changed
to the circle with its center ((r2− r1), 0) with its radius r1 + r2,
the Descartes identity holds. Here, the minus sign shows that
the circles C1 and C2 touch C3 internally from the inside of C3.

11.3.4 Two point circles and one circle case

This case is trivial, because, the exterior touching circle is co-
incident with one circle.
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11.3.5 Three points case and three lines case

In these cases we have rj = 0, j = 1, 2, 3 and the formula (11.4)
shows that r4 = 0. This statement is trivial in the general sense.

As the solution of the simplest equation

ax = b, (11.10)

we have x = 0 for a = 0, b 6= 0 as the standard value, or the
Moore-Penrose generalized inverse. This will mean in a sense,
the solution does not exist; to solve the equation (11.10) is im-
possible. The zero will represent some impossibility.

In the Descartes theorem, three lines and three points cases,
we can understand that the attaching circle does not exist, or
it is the point and so the Descartes theorem is valid.

This subsection is based on the paper [61].

11.4 Circles and a chord
We recall the following result of the old Japanese geometry [96,
89, 59]:

Lemma 10. Assume that the circle C with its radius r is
divided by a chord t into two arcs and let h be the distance from
the midpoint of one of the arcs to t. If two externally touching
circles C1 and C2 with their radii r1 and r2 also touch the chord
t and the other arc of the circle C internally, then h, r, r1 and
r2 are related by

1

r1
+

1

r2
+

2

h
= 2

√
2r

r1r2h
.

We are interesting in the limit case r1 = 0 or r2 = 0. In
order to see the backgound of the lemma, we will see its simple
proof.

The centers of C1 and C2 can be on the opposite sides of the
normal dropped on t from the center of C or on the same side
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of this normal. From the right triangles formed by the centers
of C and Ci (i = 1, 2), the line parallel to t through the center
of C, and the normal dropped on t from the center of Ci, we
have

|
√

(r − r1)2 − (h+ r1 − r)2 ±
√

(r − r2)2 − (h+ r2 − r)2|

= 2
√
r1r2,

where we used the fact that the segment length of the common
external tangent of C1 and C2 between the tangency points is
equal to 2

√
r1r2. The formula of the lemma follows from this

equation.

11.4.1 Results

We introduce the coordinates in the following way. The bottom
of the circle C is the origin and tangential line at the origin of
the circle C is the x axis and the y axis is given as in the center
of the circle C is (0, r). We denote the centers of the circles
Cj ; j = 1, 2 by (xj , yj), then we have

y1 = h+ r1, y2 = h+ r2.

Then, from the attaching conditions, we obtain the three equa-
tions:

(x2 − x1)2 + (r1 − r2)2 = (r1 + r2)
2,

x21 + (h− r + r1)
2 = (r − r1)2

and
x22 + (h− r + r2)

2 = (r − r2)2.

Solving the equations for x1, x2 and r2, we get four sets of the
solutions. Let h = 2r3, v = r− r1− r3. Then two sets are given
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by

x1 = ±2
√
r3v,

x2 = ±2
r1
√
rr3 + r3

√
r3v

r1 + r3
,

r2 =
r1r3(2

√
r(
√
r −
√
v)− (r1 + r3))

(r1 + r3)2
.

The other two sets are

x1 = ±2
√
r3v,

x2 = ∓2
r1
√
rr3 − r3

√
r3v

r1 + r3
,

r2 =
r1r3(2

√
r(
√
r +
√
v)− (r1 + r3))

(r1 + r3)2
.

We now consider the solution

x1 = 2
√
r3v,

x2 = 2
r1
√
rr3 + r3

√
r3v

r1 + r3
,

r2 =
r1r3(2

√
r(
√
r −
√
v)− (r1 + r3))

(r1 + r3)2
.

Then

(x− x2)2 + (y − y2)2 − r22 =
g0 + g1r1 + g2r

2
1 + g3

(r1 + r3)2
,

where
g0 = r23(x

2 + y(y − 4r3) + 4rr3),

g1 = 2r3((x−
√
rr3)

2 + y2 − (2r + 3r3)y + 3rr3),

g2 = (x− 2
√
rr3)

2 + y2 − 2r3y,

and
g3 = 4r3

√
v(r1(

√
ry −

√
r3x)− r3

√
r3x).
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We now consider another solution

x1 = 2
√
r3v,

x2 = −2
r1
√
rr3 − r3

√
r3v

r1 + r3
,

r2 =
r1r3(2

√
r(
√
r +
√
v)− (r1 + r3))

(r1 + r3)2
.

Then

(x− x2)2 + (y − y2)2 − r22 =
k0 + k1r1 + k2r

2
1 + k3

(r1 + r3)2
,

where
k0 = r23(x

2 + y(y − 4r3) + 4rr3),

k1 = 2r3((x+
√
rr3)

2 + y2 − (2r + 3r3)y + 3rr3),

k2 = (x+ 2
√
rr3)

2 + y2 − 2r3y,

and
k3 = −4r3

√
v(r1(

√
ry +

√
r3x) + r3

√
r3x).

We thus see that the circle C2 is represented by

(g0 + g3) + g1r1 + g2r
2
1 = 0

and
(k0 + k3) + k1r1 + k2r

2
1 = 0.

For the symmetry, we consider only the above case. We obtain
the division by zero calculus, first by setting r1 = 0, the next
by setting r1 = 0 after dividing by r1 and the last by setting
r1 = 0 after dividing by r21,

g0 + g3 = 0,

g1 = 0,

and
g2 = 0.
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That is, (
x−

√
2rh− h2

)2
+ (y − h)2 = 0,

(
x−

√
rh

2

)2

+

(
y −

(
r +

3h

4

))2

= r2 +
9

16
h2,

and (
x−
√
2rh
)2

+

(
y − h

2

)2

=

(
h

2

)2

.

The first equation represents the point (
√
2rh− h2, h) of the

intersection of the circle C and the chord t. The second equa-
tion expresses the circle with the center and radius given the
equation. The third equation expresses the circle touching C
externally, the x-axis and the extended chord t. The last two
circles are orthogonal to the circle with center at origin passing
through the points of intersection of C and t.

Now for the beautiful identity in the lemma, for r1 = 0, we
have, by the division by zero,

1

0
+

1

r2
+

2

h
= 2

√
2r

0 · r2h

and
r2 = −

h

2
.

Here, the minus sign will mean that the second circle is attaching
with the circle C in the outside of the circle C; that is, we
can consider that when the circle C1 is reduced to the point
(
√
2rh− h2, h), then the circle C2 is suddenly changed to the

second circle and the beautiful identity is still valid. Note, in
particular, the second circle is attaching with the circle C and
the chord t.

Meanwhile, for the curious second circle, we do not know its
property, however, we know curiously that it is orthogonal with
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the circle with the center at the origin and with radius
√
2rh

passing through the points (±
√
2rh− h2, h).

This subsection is based on the paper [63].
We can find more many division by zero calculus examples

in geometry. See, for example, [48, 49]. In particular, see the
beautiful Figure 14 in H. Okumura ([48]). There, the ratio of 6
same size circles and the large circle are constant and when the
radius is zero, we see a beautiful result.

Further interesting results, see H. Okumura ([55, 57]).
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12 INTRODUCTION OF FORMULAS
log 0 = log∞ = 0

For any fixed complex number a, we will consider the sector
domain ∆a(α, β) defined by

0 ≤ α < arg(z − a) < β < 2π

on the complex z plane and we consider the conformal mapping
of ∆a(α, β) into the complex W plane by the mapping

W = log(z − a).

Then, the image domain is represented by

S(α, β) = {W ;α < =W < β}.

Two lines {W ;=W = α} and {W ;=W = β} usually were
considered as having the common point at infinity, however, in
the division by zero, the point is represented by zero.

Therefore, log 0 and log∞ should be defined as zero.
Here, log∞ is precisely given in the sense of [log z]z=∞. How-
ever, the properties of the logarithmic function should not be
expected more, we should consider the value only. For example,

log 0 = log(2 · 0) = log 2 + log 0

is not valid.
In particular, in many formulas in physics, in some expres-

sion, for some constants A,B

log
A

B
, (12.1)

if we consider the case that A or B is zero, then we should
consider it in the form

log
A

B
= logA− logB, (12.2)
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and we should put zero in A or B. Then, in many formulas, we
will be able to consider the case that A or B is zero. For the
case that A or B is zero, the identity (12.1) is not valid, then the
expression logA−logB may be valid in many physical formulas.
However, the results are case by case, and we should check
the obtained results for applying the formula (12.2) for
A = 0 or B = 0. Then, we will be able to enjoy the formula
apart from any logical problems as in the applications of the
division by zero and division by zero calculus.

This paragraph will be unclear and so, we will show a typical
example.

Inverse document frequency

The inverse document frequency is a measure of how much
information the word provides, i.e., if it’s common or rare across
all documents. It is the logarithmically scaled inverse fraction
of the documents that contain the word (obtained by dividing
the total number of documents by the number of documents
containing the term, and then taking the logarithm of that quo-
tient):

idf(t,D) = log
N

|{d ∈ D; t ∈ d}|
whereN is the total number of documents in the corpusN = |D|
and |{d ∈ D; t ∈ d} is the number of documents where the term
appears (i.e., tf(t, d) 6= 0 ). If the term is not in the corpus,
this will lead to a division-by-zero. It is therefore common to
adjust the denominator to idf(t,D) = logN , that is just our
statement. See for the details

tf–idf - Wikipedia https://en.wikipedia.org/wiki/Tf–idf Traduzir
esta página In information retrieval, tf–idf or TFIDF, short
for term frequency–inverse document frequency, is a numerical
statistic that is intended to reflect how important a ...  Motiva-
tions ·  Definition ·  Justification of idf ·  Example of tf–idf.
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12.1 Applications of log 0 = 0

We can apply the result log 0 = 0 for many cases as in the
following way.

For example, we will consider the differential equation

y = xy′ − log y′.

We have the general solution

y = Cx− logC

and the singular solution

y = 1 + log x.

For C = 0, we have y = 0, by the division by zero, that is a
reasonable solution.

For the differential equation

y′ = 1 +
y

x
,

we have the general solution

y = x(log x+ C).

How will be at x = 0? From

y′ = log x+ C + 1

and
y′(0) = C + 1,

we have, for x = 0
y

x
= C

and so, we see that for x = 0, the differential equation is satis-
fied.
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For the differential equation

y′ +
1

x
y = y2 log x,

we have the general solution

xy{C − (log x)2} = 2.

Dividing by C and by setting C = 0, by the division by zero,
we have also the solutions x = 0 and y = 0.

For example, we will consider the differential equation

xy′ = xy2 − a2x log2k(βx) + ak logk−1(βx).

For the solution y = a log2k(βx)([70], page 95, 5), we can con-
sider the solution y = 0 as β = 0.

In the famous function (Leminiscate)

x = a log
a+

√
a2 − y2
y

−
√
a2 − y2, a > 0,

we have

x = a log

[
a+

√
a2 − y2
y

exp

(
−1

a

√
a2 − y2

)]
.

By the division by zero, at the point y = 0[
a+

√
a2 − y2
y

exp

(
−1

a

√
a2 − y2

)]
= 0.

Thus the curve passes also the origin (0, 0).
In the differential equation

x2y′′′ + 4x2y′′ − 2xy′ − 4y = log x,

we have the general solution

y =
C1

x
+
C2

x2
+ C3x

2 − 1

4
log x+

1

4
,
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satisfying that at the origin x = 0

y(0) =
1

4
, y′(0) = 0, y′′(0) = 2C3, y

′′′(0) = 0.

We can give the values C1 and C2. For the sake of the division
by zero, we can, in general, consider differential equations even
at analytic and isolated singular points.

From the identities

Y0(z) =
2

π

(
log

1

2
z + γ

)
J0(z)+

2

π

(
z2/2

1!
− 3

2
(z2/4)2 + ...

)
=

4

π2

∫ π/2

0
cos(z cos θ)(γ + log(2z + sin2 θ))dθ

([1], 9.1.13 and 9.1.19), we have

Y0(0) =
2

π
γ.

For the formula∫
dx√
x2 − a2

= cosh−1 x

a
(x > a > 0)

and
cosh−1 z = log(2z)− 1

4z2
+ ... |z| > 1,

we have, for a = 0, ∫
dx

x
= log 2 + log x.

However, here in
log 2 + log x− log a,

we have to have log 0 = 0.
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We will give a physical sense of log 0 = 0. We shall consider
a uniform line density µ on the z− axis, then the force field F
and the potential ϕ are given, for p = xi+ yj, p = |p|,

F = −2µ

p2
p

and
ϕ = −2µ log 1

p
,

respectively. On the z- axis, we have, of course,

F = 0, ϕ = 0.

O. Ufuoma introduced the example at (2019.12.28.5:39):
We consider the equation

2x = 0,

then, from x log 2 = log 0 = 0, we have x = 0. Meanwhile, if

2(x−a) = 0,

we have x = a. However, if a 6= 0, and if

x(x−a) = 2x2−a,

then we have x = 0, a contradiction. Therefore, the identity is
not valid in this case.

Anyhow, log 0 = 0 is defined by a special sense and so, the
derived results should be checked, case by case.

12.2 Robin constant and Green’s functions
From the typical case, we will consider a fundamental applica-
tion. Let D(a,R) = {|z| > R} be the outer disc on the complex
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plane. Then, the Riemann mapping function that maps confor-
mally onto the unit disc {|W | < 1} and the point at infinity to
the origin is given by

W =
R

z − a
.

Therefore, the Green function G(z,∞) of D(a,R) is given by

G(z,∞) = − log

{
R

|z − a|

}
.

Therefore, from the representation

G(z,∞) = − logR+ log |z|+ log

(
1− a

|z|

)
,

we have the identity

G(∞,∞) = − logR,

that is the Robin constant of D(a,R). This formula is valid in
the general situation, because the Robin constant is defined by

lim
z→b
{G(z, b) + log |z − b|},

for a general Green function with pole at b of some domain ([2]).

12.3 Division by zero calculus for harmonic func-
tions

For a harmonic function h(z, a) with an isolated singular point
at z = a around z = a, we consider the analytic function

f(z, a) = A log(z−a)+
∞∑

n=−∞
Cn(z−a)n; 0 < r < |z−a| < R,

whose real part is h(z, a) with constants A and Cn.
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Then, we define the division by zero calculus for the func-
tion h(z, a) at z = a by

h(a, a) = <C0.

For example, for the Neumann function on the disc |z| < R
with the pole at z = a

N(z, a) = log
R3

|z − a||R2 − az|
,

we have
N(a, a) = log

R3

|R2 − |a|2
.

For the famous Robin constant, this value seems not to be
considered.

12.4 e0 = 1, 0

By the introduction of the value log 0 = 0, as the inversion
function y = ex of the logarithmic function, we will consider
that y = e0 = 0. Indeed, we will show that this definition is
very natural.

We will consider the conformal mapping W = ez of the strip

S(−πi, πi) = {z;−π < =z < π}

onto the whole W plane cut by the negative real line (−∞, 0].
Of course, the origin 0 corresponds to 1. Meanwhile, we see that
the negative line (−∞, 0] corresponds to the negative real line
(−∞, 0]. In particular, on the real line limx→−∞ ex = 0. In our
new space idea from the division by zero, the point at infinity
is represented by zero and therefore, we should define as

e0 = 0.

For the fundamental exponential function W = exp z, at the
origin, we should consider 2 values. The value 1 is the natural
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value as a regular point of the analytic function, meanwhile the
value 0 is given with a strong discontinuity; however, this value
will appear in the universe in a natural way.

For the elementary functions y = xn, n = ±1,±2, · · ·, we
have

y = en log x.

Then, we wish to have

y(0) = en log 0 = e0 = 0.

As a typical example, we will consider the simple differential
equation

dx

x
− 2ydy

1 + y2
= 0.

Then, by the usual method,

log |x| − log |1 + y2| = C;

that is,

log

∣∣∣∣ x

1 + y2

∣∣∣∣ = log eC = logK,K = eC > 0

and
x

1 + y2
= ±K.

However, the constantK may be taken as zero, as we see directly
log eC = logK = 0.

In the differential equations

y′ = −λeλxy2 + aeµxy − ae(µ−λ)x

and
y′ = −beµxy2 + aλeλxy − a2be(µ+2λ)x

we have solutions
y = −e−λx,
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y = aeλx,

respectively. For λ = 0, as y = −1, y = a are solutions, respec-
tively, however, the functions y = 0, y = 0 are not solutions,
respectively. However, many and many cases, as the function
y = e0·x = 0, we see that the function is solutions of differential
equations, when y = eλ·x is the solutions. See [70] for many
concrete examples.

Meanwhile, we will consider the Fourier integral∫ ∞

−∞
e−iωte−α|t|dt =

2α

α2 + ω2
.

For the case α = 0, if this formula valid, then we have to consider
e0 = 0.

Furthermore, by Poisson’s formula, we have
∞∑

n=−∞
e−α|n| =

∞∑
n=−∞

2α

α2 + (2πn)2
.

If e0 = 0, then the above identity is still valid, however, for
e0 = 1, the identity is not valid. We have many examples.

For the integral∫ ∞

0

x3 sin(ax)

x4 + 4
dx =

π

2
e−a cos a,

the formula is valid for a = 0.
For the integral∫ ∞

0

ξ sin(xξ)

1 + a2ξ
dξ =

π

2a2
e−(x/a), x > 0,

the formula is valid for x = 0.
For the identity

xp + yp = zp,

for p = 0, we would like to consider e0 = 0 from xp = exp(p log x).
Here, in particular, consider the cases: p = 1/2 and x = 0.

Then, we have the natural result

01/2 =
√
0 = 0.
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12.5 00 = 1, 0

By the standard definition, we will consider

00 = exp(0 log 0) = exp 0 = 1, 0.

The value 1 is famous which was derived by N. Abel, meanwhile,
H. Michiwaki had directly derived it as 0 from the result of the
division by zero. However, we now know that 00 = 1, 0 is the
natural result.

We will see its reality.
For 00 = 1: In general, for z 6= 0, from z0 = e0 log z, z0 = 1,

and so, we will consider that 00 = 1 in a natural way.
For example, in the elementary expansion

(1 + z)n =
n∑

k=0

nCkz
k

the formula 00 = 1 will be convenient for k = 0 and z = 0.
In the fundamental definition

exp z =

∞∑
k=0

1

k!
zk

in order to have a sense of the expansion at z = 0 and k = 0,
we have to accept the formula 00 = 1.

In the differential formula
dn

dxn
xn = nxn−1,

in the case n = 1 and x = 0, the formula 00 = 1 is convenient
and natural.

In the Laurent expansion, if 00 = 1, it may be written simply
as

f(z) =

∞∑
n=−∞

Cn(z − a)n,
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for f(a) = C0.

For 00 = 0: For any positive integer n, since zn = 0 for

z = 0, we wish to consider that 00 = 0 for n = 0.
For the expansion

t

exp t− 1
=

∞∑
n=0

Bn

n!
tn,

with the Bernoulli’s constants Bn, the usual value of the func-
tion at t = 0 is 1 and this meets the value 00 = 1. Meanwhile,
by the division by zero, we have the value 0 by the method

t

exp t− 1
|t=0 =

0

exp 0− 1
=

0

0
= 0

and this meets with 00 = 0. Note that by the division by zero
calculus, we have the value 0 (V. V. Puha: 2018.7.3.6:01).

Philip Lloyed’s question (2019.1.18): What is the value
of the equation

xx = x

?
By the equation

x(xx−1 − 1) = 0,

we have x = 0 and x = 1 therefore, we have also 00 = 0.
P. Lloyed discovered also the solution−1, as we see the result

directly and interestingly.

Khandakar Kawkabum Munir Saad asked the question for
the equation 2x = 0 in Quora: 2019.7.4.17:00. We can give
the solution x = 0. Therefore, for the very interesting equation
x2 = 2x we have the trivial solutions 2 and 4 and furthermore,
the solution 0.
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12.6 cos 0 = 1, 0

Since
cos θ =

eiθ + e−iθ

2
,

we wish to consider also the value cos 0 = 0.
The values e0 = 0 and cos 0 = 0 may be considered that

the values at the point at infinity are reflected to the origin and
other many functions will have the same property.

The short version of this section was given by [38] in the
Proceedings of the International Conference.

12.7 Finite parts of Hadamard in singular integrals
Singular integral equations are presently encountered in a wide
range of mathematical models, for instance in acoustics, fluid
dynamics, elasticity and fracture mechanics. Together with
these models, a variety of methods and applications for these
integral equations has been developed. See, for example, [13,
27, 42, 44].

For the numerical calculation of this finite part, see [60], and
there, they gave an effective numerical formulas by using the DE
(double exponential) formula. See also its references for various
methods.

For singular integrals, we will consider their integrals as di-
vergence, however, the Haramard finite part or Cauhy’s princi-
pal values give finite values; that is, from divergence values we
will consider finite values; for this interesting property, we will
be able to give a natural interpretation by the division by zero
calculus.

What are singular integrals? For the interrelationship be-
tween divergence integrals and finite values in singular integrals,
we can obtain an essential answer by means of the division by
zero calculus.

Let F (x) be an integrable function on an interval (c, d). The
functions F (x)/(x−a)n(n = 1, 2, 3..., c < a < d) are, in general,

205



not integrable on (c, d). However, for any ϵ > 0, of course, the
functions (∫ a−ϵ

c
+

∫ d

a+ϵ

)
F (x)

(x− a)n
dx

are integrable. For an integrable function φ(x) on (a, d), we
assume the Taylor expansion

F (x) =
n−1∑
k=0

F (k)(a)

k!
(x− a)k + φ(x)(x− a)n.

Then, we have ∫ d

a+ϵ

F (x)

(x− a)n
dx

=
n−2∑
k=0

F (k)(a)

k!(n− k − 1)

1

ϵn−k−1
− F (n−1)(a)

(n− 1)!
log ϵ

+{−
n−2∑
k=0

F (k)(a)

k!(n− k − 1)

1

(d− a)n−k−1

+
F (n−1)(a)

(n− 1)!
log(d− a) +

∫ d

a+ϵ
φ(x)dx}.

Then, the last term {....} is the finite part of Hadamard of the
integral ∫ d

a

F (x)

(x− a)n
dx

and is written by

f. p.
∫ d

a

F (x)

(x− a)n
dx;

that is, precisely

f. p.
∫ d

a

F (x)

(x− a)n
dx

:= lim
ϵ→+0

{
∫ d

a+ϵ

F (x)

(x− a)n
dx
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−
n−2∑
k=0

F (k)(a)

k!(n− k − 1)

1

ϵn−k−1
+
F (n−1)(a)

(n− 1)!
log ϵ}. (12.3)

We do not take the limiting ϵ → +0, but we put ϵ = 0,
in (12.3), then we obtain, by the division by zero calculus, the
formula

f. p.
∫ d

a

F (x)

(x− a)n
dx =

∫ d

a

F (x)

(x− a)n
dx.

The division by zero will give the natural meaning (definition)
for the above two integrals.

Of course,

f. p.
∫ d

c

F (x)

(x− a)n
dx := f. p.

∫ a

c

F (x)

(x− a)n
dx

+ f. p.
∫ d

a

F (x)

(x− a)n
dx.

When n = 1, the integral is the Cauchy principal value.
In particular, for the expression (12.3), we have, missing

log ϵ term, for n ≥ 2

f. p.
∫ d

c

F (x)

(x− a)n
dx

= lim
ϵ→+0

{(
∫ a−ϵ

c
+

∫ d

a+ϵ
)
F (x)

(x− a)n
dx

−
n−2∑
k=0

F (k)(a)

k!(n− k − 1)

1 + (−1)n−k

ϵn−k−1
}.

12.8 Complex function log z

The function f(z) = log z is, of course, multiply-valued, how-
ever, we will define

f(0) = log 0 = 0,
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as a single-valued at z = 0.
Note, by the division by zero calculus,

zn

n
|n=0 = log z.

Then, for
g(z) =

1

z

and
G(z) = log z + C,

we have
g(0) = 0

and
G(0) = C.

Note that the identity

arg z = − arg z,

and so, if the function arg z is extensible to the origin as an odd
function, then the value arg 0 has to be zero and note that

log z = log |z|+ i arg z.

12.9 Complex function arg z

We will show the examples of arg z = 0; however, this should
be considered as a convention as in log 0 = 0.

On the complex z plane we consider the unit circle with its
center z = 0. On the unit circle we consider the function

arg
z + i

z − i
.

Of course, it is π/2 except two points z = i,−i. However, for
those points, the values should be still π/2. The function should
be considered for the points z = i,−i.
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For example, for the point z = i,

arg
z + i

z − i
|z=i = arg 2i− arg 0 =

π

2
.

We should consider as in the above and not apply the division
by zero calculus as in

arg
z + i

z − i
|z=i = arg 1.

We consider the bounded harmonic function

v(z) = π + 2arg(1− z)

on the unit disc |z| < 1 having the boundary values θ at the
boundary points eiθ (0 < θ < 2π). Then we have

v(1) = π.

This result is a very reasonable, because 1 is eoi = e2πi and π is
the mean value of 0 and 2π.

Meanwhile, we will consider the harmonic measure of the
unit disc taking the boundary value 1 on the arc θ0 < θ < θ1
and the value 0 on the arc θ1 < θ < θ0

ω(z) =
1

π
arg

eiθ1 − z
eiθ0 − z

− θ1 − θ0
2π

.

Since the radial limits at the points eiθ0 and eiθ1 are 1/2, it
seems that the division by zero and division by zero calculus do
not have meanings of the function

eiθ1 − z
eiθ0 − z

at the points eiθ0 and eiθ1 .
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13 Divergence series and integrals from
the viewpoint of the division by zero
calculus

For the fundamental expansion on |z| < 1

1

1− z
=

∞∑
j=0

zj , (13.1)

we will state the result. Of course, we know its meaning of the
expansion (13.1) that is valid in the open unit disc |z| < 1. Now,
how will be the expansion for the point at z = 1? Usually, we
will consider that

lim
z→1

1

1− z
diverges to infinity, meanwhile,

lim
N→∞

N∑
j=0

1j = +∞.

Of course, these are right. However, now we can consider that
by the division by zero calculus

1

1− z
= 0

at the point z = 1 and

lim
N→∞

N∑
j=0

1j = 0.

Then the expansion (13.1) is still valid for the point z = 1.
Next, for the integral ∫ ∞

1

1

x
dx, (13.2)
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we will consider that

∫ ∞

1

1

x
dx = lim

R→∞

∫ R

1

1

x
dx = lim

R→∞
logR = +∞. (13.3)

However, by the new idea of the point at infinity, this is zero
([38]), since log∞ = 0.

For ∫ ∞

0
J0(λt)dt =

1

λ
, (13.4)

we have, by the division by zero calculus idea,∫ ∞

0
J0(0t)dt =

∫ ∞

0
1dt =

1

λ
|λ=0 = 0. (13.5)

We can find many and many formulas in the divergence se-
ries and integrals that may be applied the idea. We will show
examples.

In the formula ([16], page 153), for 0 ≤ x, t ≤ π
∞∑
n=1

sinns sinnt

n
=

1

2
log | sin((s+ t)/2)/ sin((s− t)/2)|,

for s = t = 0, π, we can obtain that

0 =
1

2
log

0

0
= log 0.

In general, for s = t, we may consider that
∞∑
n=1

sin2 ns

n
=

1

2
log | sin((s+ s)/2)/0)|

=
1

2
log | sinns/0| = 1

2
log 0 = 0.

By Poisson’s formula, we have
∞∑

n=−∞
e−α|n| =

∞∑
n=−∞

2α

α2 + (2πn)2
.
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For α = 0, the both sides are zero.
For the integrals, for non-negative integer n and a > 0,∫ ∞

0
t2ne−at2dt =

Γ(n+ (1/2))

2an+1

and ∫ ∞

0
t2n+1e−at2dt =

n!

2an+1
,

for a = 0, we see that they are zero.
Meanwhile, from the well-known expansion ([1], page 807)

of the Riemann zeta function

ζ(s) =
1

s− 1
+ γ − γ1(s− 1) + γ2(s− 1)2 + ...,

we see that the value at s = 1 is the Euler constant γ; that is,

ζ(1) = γ. (13.6)

Meanwhile, from the expansion

ζ(z) =
1

z
−

∞∑
k=2

Ck
z2k−1

2k − 1

([1], 635 page 18.5.5), we have

ζ(0) = 0.

From our idea that the point at infinity is represented by zero,
the result ζ(1) = γ is contrary curious. However, we should
consider that

∞∑
n=1

1

n
= 0, (13.7)

because the limit tends to infinity or N terms sums are not
bounded. We should consider some problem for its representa-
tion ζ(1) by the Riemann zeta function by its analytic extension.
For this point, recall that

ζ(z) = − 1

12
+ (x+ 1)

(
1

12
− logC

)
+ ...
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for x = −1; that is ζ(−1) = −1/12 by the division by zero
calculus, of course, it does not represent the series

1 + 2 + 3 + ...+ n+ ...

In many places in mathematical science, infinity notation
may be replaced with zero, by the concept of the division by
zero calculus. How to represent the formulas? We will need
some time in order to see some global situation. These facts
anyhow will show a new meaning of ZERO.
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14 BASIC MEANINGS OF VALUES AT
ISOLATED SINGULAR POINTS OF
ANALYTIC FUNCTIONS

The values of analytic functions at isolated singular points were
given by the coefficients C0 of the Laurent expansions (the first
coefficients of the regular part) as the division by zero calcu-
lus. Therefore, their property may be considered as arbitrary
ones by any sift of the image complex plane. Therefore, we can
consider the values as zero in any Laurent expansions by shifts,
as normalizations. However, if by another normalizations, the
Laurent expansions are determined, then the values will have
their senses. We will firstly examine such properties for the
Riemann mapping function.

Let D be a simply-connected domain containing the point at
infinity having at least two boundary points. Then, by the cele-
brated theorem of Riemann, there exists a uniquely determined
conformal mapping with a series expansion

W = f(z) = C1z + C0 +
C−1

z
+
C−2

z2
+ . . . , C1 > 0, (14.1)

around the point at infinity which maps the domain D onto the
exterior |W | > 1 of the unit disc on the complex W plane. We
can normalize (14.1) as follows:

f(z)

C1
= z +

C0

C1
+
C−1

C1z
+
C−2

C1z2
+ . . . .

Then, this function f(z)
C1

maps D onto the exterior of the circle
of radius 1/C1 and so, it is called the mapping radius of D.
See [6, 94]. Meanwhile, from the normalization

f(z)− C0 = C1z +
C−1

z
+
C−2

z2
+ . . . ,

by the natural shift C0 of the image plane, the unit circle is
mapped to the unit circle with its center C0. Therefore, C0 may
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be called as mapping center of D. The function f(z) takes the
value C0 at the point at infinity in the sense of the division by
zero calculus and now we have its natural sense by the mapping
center of D. We have considered the value of the function f(z)
as infinity at the point at infinity, however, practically it was
the value C0. This will mean that in a sense the value C0 is the
farthest point from the point at infinity or the image domain
with the strong discontinuity.

The properties of mapping radius were investigated deeply in
conformal mapping theory like estimations, extremal properties
and meanings of the values, however, it seems that there is no
information on the property of mapping center. See many books
on conformal mapping theory or analytic function theory. See
[94] for example.

From the fundamental Bierberbach area theorem, we can
obtain the following inequality:

For analytic functions on |z| > 1 with the normalized expan-
sion around the point at infinity

g(z) = z + b0 +
b1
z

+ · · ·

that are univalent and take no zero point,

|b0| ≤ 2.

In our sense
g(∞) = b0.

See [45], Chapter V, Section 8 for the details.

14.1 Values of typical Laurent expansions
The values at singular points of analytic functions are repre-
sented by the Cauchy integral, and so for given functions, the
calculations will be simple numerically, however, their analyti-
cal (precise) values will be given by using the known Taylor or
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Laurent expansions. In order to obtain some feelings for the val-
ues at singular points of analytic functions, we will see typical
examples and fundamental properties.

For
f(z) =

1

cos z − 1
, f(0) = −1

6
.

Here, note that

1

cos z − 1
= − 1

z2
− 1

6
− z2

120
− · · ·.

For
f(z) =

log(1 + z)

z2
, f(0) =

−1
2
.

For
f(z) =

1

z(z + 1)
, f(0) = −1.

For our purpose in the division by zero calculus, when a
is an isolated singular point, we have to consider the Laurent
expansion on {0 < r < |z − a| < R} such that r may be taken
arbitrary small r, because we are considering the function at a.

For

f(z) =
1

z2 + 1
=

1

(z + i)(z − i)
, f(i) =

1

4
.

For
f(z) =

1√
(z + 1)− 1

, f(0) =
1

2
.

For the Bernoulli constants Bn, we have the expansions

1

(exp z)− 1
=

1

z
− 1

2
+

∞∑
n=1

(−1)n−1Bn

(2n)!
z2n−1

=
1

z
− 1

2
+ 2z

∞∑
n=1

1

z2 + 4π2n2
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and so, we obtain

1

(exp z)− 1
(z = 0) = −1

2
,

([72], page 444).

From the well-known expansion ([1], page 807) of the Rie-
mann zeta function

ζ(s) =
1

s− 1
+ γ − γ1(s− 1) + γ2(s− 1)2 + ...,

we see that the Euler constant γ is the value at s = 1; that is,

ζ(1) = γ.

Meanwhile, from the expansion

ζ(z) =
1

z
−

∞∑
k=2

Ck
z2k−1

2k − 1

([1], 635 page 18.5.5), we have

ζ(0) = 0.

From the representation of the Gamma function Γ(z)

Γ(z) =

∫ ∞

1
e−ttz−1dt+

∞∑
n=0

(−1)n

n!(z + n)

([72], page 472), we have

Γ(−m) = Em+1(1) +
∞∑

n=0,n ̸=m

(−1)n

n!(−m+ n)

and
[Γ(z) · (z + n)](−n) = (−1)n

n!
.
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In particular, we obtain

Γ(0) = −γ,

by using the identity

E1(z) = −γ − log z −
∞∑
n=1

(−1)nzn

nn!
, | arg z| < π

([1], 229 page, (5.1.11)). Of course,

E1(z) =

∫ ∞

z
e−tt−1dt.

From the recurrence formula

ψ(z + 1) = ψ(z) +
1

z

of the Psi (Digamma) function

ψ(z) =
Γ′(z)

Γ(z)
,

([1], 258), we have, for z = 0, 1,

ψ(0) = ψ(1) = −γ.

Note that

ψ(1 + z) = −γ +
∞∑
n=2

(−1)nζ(n)zn−1, |z| < 1

= −γ +

∞∑
n=

z

n(n+ z)
, z 6= −1,−2, ...

([1], 259).
From the identity

1

ψ(z + 1)− ψ(z)
= z,
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we have

1

ψ(z + 1)− ψ(z)
(z = 0) = 0.

From the identities
Γ(z)

Γ(z + 1)
=

1

z
,

and
Γ(z)Γ(1− z) = π

sinπz
,

note that their values are zero at z = 0.
By using WolframAlpha, we obtain:

Γ(x) =
1

x
− γ +

1

12
(6γ2 + π2))x+ ...,

Γ(x) =
1

x+ 1
+ (γ − 1) +

(
−1 + γ − 1

2
γ2 − 1

12
π2
)
(x+1)+ ...,

Γ(x) =
1

2(x+ 2)
+
1

4
(3−2γ)+ 1

24

(
21− 18γ + 6γ2 + π2

)
(x+2)+...,

Γ(x) = − 1

6(x+ 3)
+

1

36
(6γ − 11)

+
1

216

(
−85 + 66γ − 18γ2 − 3π2

)
(x+ 3) + ...,

ψ(z) = −1

z
− γ +

1

6
π2z + ...,

ψ(z) = − 1

z + 1
+ (1− γ) +

(
1 +

1

6
π2
)
(z + 1) + ...,

ψ(z) = − 1

z + 2
+

(
3

2
− γ
)
+

(
5

4
+

1

6
π2
)
(z + 2) + ...,

and

ψ(z) = − 1

z + 3
+

(
11

6
− γ
)
+

(
49

36
+

1

6
π2
)
(z + 3) + ....
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From the expansions

℘(z) =
1

z2
+

∞∑
k=2

Ckz
2k−2

and
℘′(z) =

−2
z3

+

∞∑
k=2

(2k − 2)Ckz
2k−3

([1], 623 page, 18.5.1. and 18.5.4), we have

℘(0) = ℘′(0) = 0.

We can consider many special functions and the values at
singular points. For example,

Y3/2(z) = J−3/2(z) = −
√

2

πz

(
sin z +

cos z

z

)
,

I1/2(z) =

√
2

πz
sinh z,

K1/2(z) = K−1/2(z) =

√
π

2z
e−z,

and so on. They take the value zero at the origin, however, we
can consider some meanings of the value.

Of course, the product property is, in general, not valid:

f(0) · g(0) 6= (f(z)g(z))(0);

indeed, for the functions f(z) = z+1/z and g(z) = 1/z+1/(z2)

f(0) = 0, g(0) = 0, (f(z)g(z))(0) = 1.

For an analytic function f(z) with a zero point a, for the
inversion function

(f(z))−1 :=
1

f(z)
,
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we can calculate the value (f(a))−1 at the singular point a.
For example, note that for the function

f(z) = z − 1

z
,

f(0) = 0, f(1) = 0 and f(−1) = 0. Then, we have

(f(z))−1 =
1

2(z + 1)
+

1

2(z − 1)
.

Hence,

((f(z))−1)(z = 0) = 0, ((f(z))−1)(z = 1) =
1

4
,

((f(z))−1(z = −1) = −1

4
.

Here, note that the point z = 0 is not a regular point of the
function f(z).

We, meanwhile, obtain that(
1

log x

)
x=1

= 0.

Indeed, we consider the function y = exp(1/x), x ∈ R and
its inverse function y = 1

log x . By the symmetric property of
the functions with respect to the function y = x, we have the
desired result.

Here, note that for the function 1
log x , we can not use the

Laurent expansion around x = 1, and therefore, the result is
not trivial.

We shall refer to the trigonometric functions. See, for ex-
ample, ([1], page 75) for the expansions.

From the expansions

1

sin z
=

1

z
+

+∞∑
ν=−∞,ν ̸=0

(−1)ν
(

1

z − νπ
+

1

νπ

)
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and
=

1

z
+
z

6
+

7z3

360
+ · · ·,(

1

sin z

)
(0) = 0.

Meanwhile, from the expansions

1

sin2 z
=

∞∑
ν=−∞

1

(z − νπ)2

and
=

1

z2
+

1

3
+
z2

15
+ · · ·,(

1

sin2 z

)
(0) =

2

π2

∞∑
ν=1

1

ν2
=

1

3
.

From the expansion

1

cos z
= 1 +

+∞∑
ν=−∞

(−1)ν
(

1

z − (2ν − 1)π/2
+

2

(2ν − 1)π

)

= − 1

z − π
2

− 1

6

(
z − π

2

)
− 7

360

(
z − π

2

)3
+ · · ·,

(
1

cos z

)(π
2

)
= 1− 4

π

∞∑
ν=0

(−1)ν

2ν + 1
= 0.

Meanwhile, from the expansion

1

cos2 z
=

+∞∑
ν=−∞

1

(z − (2ν − 1)π/2)2

and
=

1(
z − π

2

)2 +
1

3
+

1

15

(
z − π

2

)2
+ · · ·,
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(
1

cos2 z

)(π
2

)
=

2

π2

∞∑
ν=1

1

ν2
=

1

3
.

By the Laurent expansion and by the definition of the divi-
sion by zero calculus, we note that:

Theorem: For any analytic function f(z) on 0 < |z| <∞,
we have

f(0) = f(∞).

For a rational function

f(z) =
amz

m + · · ·+ a0
bnzn + · · ·+ b0

; a0, b0 6= 0; am, bn 6= 0,m, n ≥ 1

f(0) = f(∞) =
a0
b0
.

Of course, here f(∞) is not given by any limiting z → ∞,
but it is the value at the point at ∞.

The derivatives of n!:

Note that the identity z! = Γ(z+1) and the Gamma function
is a meromorphic function with isolated singular points on the
entire complex plane. Therefore, we can consider the derivatives
of the Gamma function even at isolated singular points, in our
sense.

14.2 Values of domain functions
In this subsection, we will examine the values of typical domain
functions at singular points. For a basic reference, see [45].

1). For the mapping

W =
z

1− z
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that maps conformally the unit disc |z| < 1 onto the half-plane
{ReW > 1

2}, we have

W (1) = −1.

2). For the Koebe function

W =
z

(1− z)2

that maps conformally the unit disc |z| < 1 onto the cut plane
of (−∞,−1

4) we have
W (1) = 0.

We can understand it as follows. The boundary point z = 1 of
the unit disc is mapped to the point at infinity, however, the
point is represented by zero. We can see the similar property,
for many cases.

3). For the Joukowsky transform

W =
1

2

(
1

z
+ z

)
that maps conformally the unit disc |z| < 1 onto the cut plane
of [−1, 1] we have

W (0) = 0.

This correspondence will be curious in a sense. The origin that
is an interior point corresponds to the boundary point of the
origin. Should we consider the situation as in the case 2? -
the image of the origin is the point at infinity and the point is
represented by zero, the origin.

4). For the transform

W =
z

1− z2
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that maps conformally the unit disc |z| < 1 onto the cut plane
of the imaginary axis of [+∞, i/2] and [−∞,−i/2] we have

W (1) = −1

4
, W (−1) = 1

4
,

by the method of Laurent expansion method, curiously. Should
we consider the values at z = 1 and z = −1 as 0 from 1/0 and
−1/0 by the insertings z = 1 and z = −1 in the numerator and
denominator?

5). For the conformal mapping W = P (z; 0, v), |v| < 1 of
the unit disc onto the circular slit W plane that is normalized
by P (0; 0, v) = 0 and

P (z : 0, v) =
1

z − v
+ C0 + C0(z − v) + ...,

is given by, explicitly

P (z; 0, v) =
1

v(1− |v|2)
z(1− vz)
z − v

([45], 340 page). Then, we obtain

P (z : 0, v)|z=v = C0 =
1− 2|v|2

v(1− |v|2)
,

at z = v by the Laurent expansion method. By the constant
C0, we can consider as in the mapping center by shift of the
image plane. We may also give the value for z = v by

P (z : 0, v)|z=v =

[
1

v(1− |v|2)
z(1− vz)
z − v

]
z=v

=
v(1− |v|2)

0
= 0.

The circumstance is similar for the corresponding canonical con-
formal mapping Q(z : 0, v) for the radial slit mapping.

The Szegö kernel
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For the Szegö kernel K(z, u) and its adjoint L kernel L(z, u)
on a regular region D on the complex z plane, the function

f(z) =
K(z, u)

L(z, u)

is the Ahlfors function on the domain D and it maps the domain
D onto the unit disc |w| < 1 with one to the multiplicity of the
connectivity of the domain D. From the relation L(z, u) =
−L(u, z), we see that L(u, u) = 0 in the sense of the division by
zero calculus. Therefore, from the identity

L(z, u) =
1

2π(z − u)
+

1

2π

∫
∂D

K(u, ζ)

ζ − z
|dζ|

([45], 390 page), we have the identity∫
∂D

K(z, ζ)

ζ − z
|dζ| = 0.

These results can also be confirmed directly.
By this method, we can find many new identities.

14.3 The values of the Riemann zeta function at
positive integers

In this subsection, we will examine the values of the Riemann
zeta function for positive integers 2 ≤ n by using the division
by zero calculus. For the values of the Riemann zeta functions
at positive integers, see [25]. In particular, note that for odd
integers, their values were mysterious. We can give the values
in the both senses of analytical and numerical.

14.3.1 Simple applications of the division by zero cal-
culus

As the first try, we will see some simple applications of the
division by zero calculus to some typical formulas in order to
look for the values of the Riemann zeta function.
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Method 1
First, we recall the basic identity

1

sin2 z
=

∞∑
k=−∞

1

(z − kπ)2

([1], page 75: 4.3.92), because the right hand side becomes,
by the division by zero calculus, at z = 0, by taking n times
derivative

2(n− 1)!

πn
ζ(n).

However, note that this formula is valid for an even n.
Meanwhile, we will use the expansion

1

sin z
=

1

z
+
z

6
+

7

360
z3 +

31

15120
z5 + · · ·

+
(−1)n−12(22n−1 − 1)B2n

(2n)!
z2n−1 + · · · (|z| < π) (14.2)

([1], page 75: 4.3.68). We will calculate the square of this ex-
pansion and by taking n order derivative, we can calculate the
value at z = 0, by the division by zero calculas.

We can obtain simply the following results, by this method

ζ(2) =
π2

6
,

η(2) =
π2

12

and
ζ(4) =

π4

90
.

For the values of the Riemann zeta function for even integers,
we know good results, and so we do not examine any further
details here.

Method 2
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We will use the identities:

cot z =
1

z
+ 2z

∞∑
k=1

1

z2 − k2π2
(14.3)

([1], page 75, 4.3.93) and

cot z =
1

z
− z

3
− z3

45
− 2z5

945
− · · · (14.4)

−(−1)n−122nB2n

(2n)!
z2n−1 − · · · (|z| < 1)

([1], page 75, 4.3.70).
From (14.3), we have(

cot z

z

)′
= − 2

z3
− 4z

∞∑
k=1

1

(z2 − k2π2)2
.

Therefore, we have(
cot z

z

)′ 1

z
= − 2

z4
− 4

∞∑
k=1

1

(z2 − k2π2)2

= − 2

z4
− 2

45
−

Hence, we have

ζ(4) =
π4

90
.

By induction, we can obtain ζ(2n).

Method 3
We will use the identities:

1

sin z
=

1

z
+ 2z

∞∑
k=1

(−1)k

z2 − k2π2
(14.5)

([1], page 75, 4.3.93) and (14.2).
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From these identities, we obtain

1

z2
+ 2

∞∑
k=1

(−1)k

z2 − k2π2

=
1

z2
+

1

6
+

7

360
+ · · ·

Therefore, we obtain the result

1− 1

22
+

1

32
− 1

52
+ · · · = π2

12
.

Method 4
Recall the expansion

cot z =
1

z
+

∞∑
k=−∞,k ̸=0

(
1

z − kπ
+

1

kπ

)
. (14.6)

By taking n order derivatives that are very simple with
(14.3) we obtain the values of the Riemann zeta function ζ(n),
easily. However, note that n has to be even integers.

14.3.2 Some general definite result

Recall the expansion

ψ(z) =
Γ′(z)

Γ(z)
= −γ − 1

z
−

∞∑
k=1

(
1

z + k
− 1

k

)
(14.7)

([15], page 53). We obtain, taking n−1; (n > 2) order derivative,
by the division by zero calculus

ζ(n) =
(−1)n

(n− 1)!
ψ(n−1)(z)|z=0. (14.8)

Recall the expansion
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ψ(z + 1) = −γ +
∞∑
k=2

(−1)kζ(k)zk−1 (|z| < 1) (14.9)

([1], page 259, 6.3.14). Then we obtain

ψ(z + 1)

zn−1
=
−γ
zn−1

+
∞∑
k=2

(−1)kζ(k)z
k−1

zn−1
(|z| < 1). (14.10)

Hence, by the division by zero calculus, we obtain, for n > 2

ζ(n) = (−1)nψ(z + 1)

zn−1
|z=0. (14.11)

Then, by using (14.9), we obtain for n = 2, by MATHE-
MATICA

ζ(3) = 1− ψ(2)(2)

2
∼ 1.20206.

Note that with MATHEMATICA, we can derive the Laurent
expansion for many analytic functions and so we can obtain the
division by zero calculus for many analytic functions.

In general, we have

Theorem:

ζ(n) = 1− ψ(n−1)(2)

(n− 1)!
. (14.12)

These values may be calculated easily as follows:

ζ(5) = 1− 1

24
ψ(4)(2) ∼ 1.03693,

ζ(6) =
π6

945
∼ 1.01734
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ζ(7) = 1− 1

720
ψ(6)(2) ∼ 1.00835,

ζ(8) =
π8

9450
∼ 1.00408,

ζ(9) = 1− 1

40320
ψ(8)(2) ∼ 1.00201.

Note that the value of the function ψ(z) may be calculated
easily by MATHEMATICA.

In particular, note the well-known formulas:

ζ(2n) = (−1)n+1 B2n(2π)
2n

2(2n)!
,

ζ(−n) = − Bn+1

n+ 1
.

The following formula was given by S. Ramanujan (1887 - 1920)

ζ(2n+ 1) = 22n π2n+1
n+1∑
k=0

(−1)k+1 B2k

(2k)!

B2n+2−2k

(2n+ 2− 2k)!

−2
∞∑
k=1

k−2n−1

e2πk − 1
.

For the known results, our results are the similar.
This subsection is taken from ([66]).

14.4 Mysterious properties on the point at infinity
In this subsection, we will refer to some feelings on the point
at infinity, because, the division by zero creates a new world on
the point at infinity.
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14.4.1 Many points at infinity?

When we consider a circle with its center P , by the inversion
with respect to the circle, the points of a neighborhood at the
point P are mapped to a neighborhood around the point at
infinity except the point P . This property is independent of
the radius of the circle. It looks that the point at infinity is
depending on the center P . This will mean that there exist
many points at infinity, in a sense.

14.4.2 Stereographic projection

The point at infinity may be realized by the stereographic pro-
jection as well known. However, the projection is depending on
the position of the sphere (the plane coordinates). Does this
mean that there exist many points at infinity?

14.4.3 Laurent expansion

From the definition of the division by zero calculus, we see that
if there exists a negative n term in (5.5)

lim
z→a

f(z) =∞,

however, we have (5.6). The values at the point a have many
values, that are any complex numbers. At least, in this sense,
we see that we have many points at the point at infinity.

In the sequel, we will show typical points at infinity.

14.4.4 Diocles’ curve of Carystus (BC 240? - BC 180?)

The beautiful curve

y2 =
x3

2a− x
, a > 0

is considered by Diocles. By setting X =
√
2a− x we have

y = ± x(3/2)√
2a− x

= ±(2a−X2)(3/2)

X
.
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Then, by the division by zero calculus at X = 0, we have a
reasonable value 0.

Meanwhile, for the function x3

2a−x , we have −12a2, by the
division by zero calculus at x = 2a. This leads to a wrong
value.

14.4.5 Nicomedes’ curve (BC 280 - BC 210)

The very interesting curve

r = a+
b

cos θ

is considered by Nicomedes from the viewpoint of the 1/3 divi-
sion of an angle. That has very interesting geometrical mean-
ings. For the case θ = ±(π/2), we have r = a, by the division
by zero calculus.

Of course, the function is symmetric for θ = 0, however,
we have a mysterious value r = a, for θ = ±(π/2). Look the
beautiful graph of the function.

14.4.6 Newton’s curve (1642 - 1727)

Meanwhile, for the famous Newton curve

y = ax2 + bx+ c+
d

x
(a, d 6= 0),

of course, we have y(0) = c.
Meanwhile, in the division by zero calculus, the value is de-

termined by the information around any analytical point for an
analytic function, as we see from the basic property of analytic
functions.

At this moment, the properties of the values of analytic func-
tions at isolated singular points are mysterious, in particular, in
the geometrical sense.
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14.4.7 Unbounded, however, bounded

We will consider the high

y = tan θ, 0 ≤ θ ≤ π

2

on the line x = 1. Then, the high y is unbounded, however,
the high line (gradient) can not be extended beyond the y axis.
The restriction is given by 0 = tan(π/2).

Recall the stereographic projection of the complex plane.
The points on the plane can be expanded in an unbounded
way, however, all points on the complex plane have to be cor-
responded to the points of the Riemann sphere. The restriction
is the point at infinity which corresponds to the north pole of
the Riemann sphere and the point at infinity is represented by
0.

This subsection is presented in [81].
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15 DIVISION BY ZERO CALCULUS ON
MULTI-DIMENSIONAL SPACES

In order to make clear the problem, we give firstly a prototype
example. We have the identity by the division by zero calculus,
for

f(z) =
1 + z

1− z
, f(1) = −1.

From the real part and imaginary part of the function, we have,
for z = x+ iy

1− x2 − y2

(1− x)2 + y2
= −1, at (1, 0)

and
y

(1− x)2 + y2
= 0, at (1, 0),

respectively. Why the differences do happen?

15.1 Definition of the division by zero calculus for
multidimensional spaces

In order to solve this problem, we will give the definition of the
division by zero calculus on multidimensional spaces.

Definition of the division by zero calculus for mul-
tidimensional spaces. For an analytic function g(z) on a
domain D on Cn, n ≥ 1, we set

E = {z ∈ D; g(z) = 0}.

For an analytic function f(z) on the set D \ E such that

f(z) =
∞∑

n=−∞
Cn(z)g(z)

n, (15.1)
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for analytic functions Cn(z) on D, we define the division by zero
calculus by the correspondence

f −→ Ff,g=0(z) := C0(z)

that shows a natural analytic function of the function f on the
domain D derived from D\E with respect to E = {z ∈ D; g(z) =
0}.

Of course, this definition is a natural extension of one di-
mensional case. The expression (15.1) may be guaranteed by
the general Laurent expansion that was introduced by Takeo
Ohsawa:

Proposition 13.1 In the Definition of the division by zero
calculus for mutidimensional spaces, if the domain D is a regular
domain, for any analytic function g, the expansion (15.1) is
possible.

See [93] for the related topics.
However, since the uniqueness of the expansion is, in gen-

eral, not valid, the division by zero calculus is not determined
uniquely. However, we are very interested in the expansion
(15.1) and the property of the function C0(z) as in the one di-
mensional case.

From the above arguments, we can see the desired results
for the examples as follows:

1− x2 − y2

(1− x)2 + y2

= −1 + 2(1− x)
(1− x)2 + y2

= −1, at (1, 0)

and
y

(1− x)2 + y2
= 0, at (1, 0).
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15.2 In parameter representations
For example, we will consider the parameter representation

x2 =
a(u− a)(v − a)
(b− a)(c− a)

, (15.2)

y2 =
b(u− b)(v − b)
(c− b)(a− b)

, (15.3)

z2 =
c(u− c)(v − c)
(a− c)(b− c)

, (15.4)

of the ellipsoid

x2

a
+
y2

b
+
z2

c
= 1 a, b, c, > 0 (15.5)

([16], 112 page).
For the very natural case b = a, how will be the parameter

representations (13.2)-(13.4)?
At first, we have, by the division by zero, for b = a,

x2

a
+
y2

a
+
z2

c
= 1 (15.6)

and
x2 = 0. (15.7)

Therefore
y2

a
+
z2

c
= 1. (15.8)

This will mean that (13.5) is the rotation of (13.8) around the z
axis and (13.8) is the cut elliptic function of (13.5) by the plane
x = 0.

Next, by the division by zero calculus, we have

y2 = − 1

(c− a)2
[c(u−a)(v−a)−a(c−a)(u−a)−a(c−a)(v−a)].

(15.9)
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However, since we are considering the case with x = 0, the
parameters u and v have to be restricted as u = a or v = a. We
fix as v = a then we have

y2 =
a(a− u)
a− c

. (15.10)

Finally, of course, we have

z2 =
c(u− c)
a− c

. (15.11)

Meanwhile, we will consider the parametric representations
with c = 0

x2 =
−(u− a)(v − a)

b− a
, (15.12)

y2 =
−(u− b)(v − b)

a− b
, (15.13)

z2 = 0. (15.14)

Then, we note that

x2

a
+
y2

b
= 1− uv

ab
(15.15)

and so, for the case u = 0 or v = 0, we obtain the parameter
representation for the elliptic curve

x2

a
+
y2

b
= 1. (15.16)
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15.3 Open problems

In Subsection 2, we gave natural interpretations for the param-
eter representations (13.2)-(13.4) for the case b = a by the divi-
sion by zero and division by zero calculus. However, we wonder

Open problem: For the parameter representations (13.2)-
(13.4), could we derive some parameter representations of (13.6)?

When, we use (13.6), (13.4) and (3.9), we have the curious
representation:

x2 =
1

(c− a)2
[uv(c−a)+ac(u+v)+a2(u+v+c)−a3−a(c−a)(v−a)].

(15.17)
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16 DIVISION BY ZERO CALCULUS IN
PHYSICS

We will see the division by zero properties in various physical
formulas. We found many and many division by zero phenom-
ena in physics and others, however, we expect many publications
about them by the related specialists. As the first stage, here
we refer only to elementary formulas, as examples.

16.1 Bhāskara’s example – sun and shadow
We will consider the circle such that its center is the origin and
its radius R. We consider the point S (sun) on the circle such
that ∠SOI = θ; O(0, 0), I(R, 0). For fixed d > 0, we consider
the common point (−L,−d) of two line OS and y = −d. Then
we obtain the identity

L =
R cos θ

R sin θ
d,

([30], page 77.). That is the length of the shadow of the segment
of (0, 0)− (0,−d) onto the line y = −d of the sun S.

When we consider θ → +0 we see that, of course

L→∞.

Therefore, Bhāskara considered that
1

0
=∞. (16.1)

Even nowadays, our mathematics and many people consider so.
However, for θ = 0, we have S=I and we can not consider

any shadow on the line y = −d, so we should consider that
L = 0; that is

1

0
= 0. (16.2)

Nothing may be represented by zero; it will be a
sense of zero.
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Furthermore, for R = 0; that is, for S=O, we see its shadow
is the point (0,−d) and so L = 0 and

L =
0 cos θ

0 sin θ
d = 0;

that is
0

0
= 0.

This example shows that the division by zero calcu-
lus is not almighty.

Note that both identities (16.1) and (16.2) are right in their
senses. Depending on the interpretations of 1/0, we obtain IN-
FINITY and ZERO, respectively.

16.1.1 Another example

We consider a triangle ABC with AB = c, BC = a, CA = c.
Let xi be the orthogonal projections of AB and AC to the line
BC. Then we have

xi =
1

2

{
a∓ (b+ c)|b− c|

a

}
,

([30], pages 70-71.). If b = c, then, of course, x1 = x2 = a/2.
For a = 0, by the division by zero, we have the reasonable value
x1 = x2 = 0.

16.1.2 Remark

For the example ([30], pages 70-71.), we see that now there is
no problem, because we have the relation

R

jc
=

r

R
.
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Then, we have the right formula

y = r sinφ.

16.2 In balance of a steelyard
We will consider the balance of a steelyard and then we have
the equation

aFa = bFb (16.3)
as the moment equality. Here, a, b are the distances from a fixed
point and force Fa, Fb points, respectively. Then, we have

Fa =
b

a
Fb.

For a = 0, should be considered as Fa = 0 by the division by
zero b/0 = 0?

The identity (16.3) appears in many situations, and the
above result may be valid similarly.

As a typical case, we recall

Ctesibios (BC. 286-222): We consider a flow tube with some
fluid. Then, when we consider some cut with a plane with its
area S and with its velocity v of the fluid on the plane, by
continuity, we see that for any cut plane, Sv = C; C : constant.
That is,

v =
C

S
.

When S tends to zero, the velocity v tends to infinity. How-
ever, for S = 0, the flow stops and so, v = 0. Therefore, this
example shows the division by zero C/0 = 0 clearly. Of course,
in the situation, we have 0/0 = 0, trivially.

We can find many and many similar examples, for example,
in Archimedes’ principle and Pascal’s principle.
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We will state one more example:

E. Torricelli (1608 -1646): We consider some water tank
and the initial high h = h0 for t = 0 and we assume that from
the bottom of the tank with a hole of area A, water is fall down.
Then, by the law with a constant k

dh

dt
= − k

A

√
h,

we have the equation

h(t) =

(√
h0 −

k

2A

)2

.

Similarly, of course, for A = 0, we have

h(t) = h0.

Even the fundamental relation among velocity v, time t and
distance s

t =
s

v
,

we will be able to understand the division by zero
s

0
= 0

and
0

0
= 0.

16.3 By rotation
We will give a simple physical model showing the result 0

0 = 0.
We shall consider a disc with x2 + y2 ≤ a2 rowling uniformly
with a positive constant angular velocity ω with its center at
the origin. Then we see, at the only origin, ω = 0 and at other
all points, ω is a constant. Then, we see that the velocity and

243



the radius r are zero at the origin. This will mean that, in the
general formula

v = rω,

or, in
ω =

v

r

at the origin,
0

0
= 0.

We will not be able to obtain the result from

lim
r→+0

ω = lim
r→+0

v

r
,

because it is the constant.
For a uniform rotation with velocity v with its center O′ and

with its radius r. For the angular velocity vector ω and for the
moving position P on the circle, we set r = OP . Then,

v = ω × r.

If ω × r = 0, then, of course, v = 0.

16.4 By the Newton’s law
We will recall the fundamental law by Newton:

F = G
m1m2

r2
(16.4)

for two masses m1,m2 with a distance r and for a constant G.
Of course,

lim
r→+0

F =∞,

however, as in our fraction

F = 0 = G
m1m2

0
. (16.5)
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Of course, here, we can consider the above interpretation
for the mathematical formula (16.4) as the new interpretation
(16.5). In the ideal case, when two masses are on one point, the
force F will not be positive and it will be reduced to zero.

In the Kepler (1571 - 1630) - Newton (1642 - 1727) law for
central force movement of the planet,

m
d2r

dt2
= −GmM

r3
r,

of course, we have r = 0 for r = 0.
For the Coulomb’s law, see similar formulas. Indeed, in the

formula
F = k

(+q)(−q)
r2

for r = 0, we have F = 0.
In general, in the formula

F = k
(Q1)(Q2)

r2

for r = 0, we have F = 0 (S. Senuma: 2016.8.20.).
Furthermore, as well-known, the bright at a point at the

distance r from the origin is given by the formula

B = k
P

r2
,

where k is a constant and P is the amount of the light. Of
course, we have, at the infinity

B = 0.

Then, meanwhile, may we consider as

B = 0

at the origin r = 0? Then we can obtain our formula

k
P

0
= 0,

as in our new formula.
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16.5 An interpretation of 0× 0 = 100 from
100/0 = 0

The expression 100/0 = 0 will represent some divisor by the
zero in a sense that is not the usual one, and so, we will be able
to consider some product sense 0× 0 = 100.

We will show such an interpretation.
We shall consider same two masses m, however, their con-

stant velocities v for the origin are the same on the real line,
in the symmetry way. We consider the moving energy product
E2,

1

2
mv2 × 1

2
m(−v)2 = E2.

We shall consider at the origin and we assume that the two
masses stop at the origin (possible in some case). Then, we can
consider, formally

0× 0 = E2.

The moving energies change to other energies, however, we can
obtain some interpretation as in the above.

This example was discovered by M. Yamane presented in the
paper [36].

16.6 Capillary pressure in a narrow capillary tube
In a narrow capillary tube saturated with fluid such as water,
the capillary pressure is simply expressed as follows,

Pc =
2σ

r

where Pc is capillary pressure (suction pressure), σ is surface
tension, and r is radius. If r is zero, there is no pressure. How-
ever Pc shows infinity, in the common meaning.

This simple equation is based on the Laplace-Young equa-
tion

P = σ

(
1

R1
+

1

R2

)
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where R1 and R2 are two principal radii of curvature at any
point on the surface of a droplet or a bubble and in the case
of spherical form R1 = R2 = R. For a spherical bubble the
pressure difference across the bubble film is zero since the pres-
sure is the same on both sides of the film. The Laplace-Young
equation reduces to

1

R1
+

1

R2
= 0.

On other hand when diameter of a bubble is decreased and
becomes 0(R = 0), the bubbles collapse and enormous energy
is generated. Accumulated free energy in the bubble is released
instantaneously.

This example was discovered by M. Kuroda presented in
[36].

16.7 Circles and curvature - an interpretation of
the division by zero r/0 = 0

We consider a solid body called right circular cone whose bottom
is a disc with its radius r2. We cut the body with a disc of radius
r1(0 < r1 < r2) that is parallel to the bottom disc. We denote
the distance by d between both discs and R the distance between
the top point of the cone and the bottom circle on the surface
of the cone. Then, R is calculated by Eko Michiwaki (8 year
old daughter of H. Michiwaki) as follows:

R =
r2

r2 − r1

√
d2 + (r2 − r1)2,

that is called EM radius, because by the rotation of the cone on
the plane, the bottom circle writes the circle of radius R. We
denote by K = K(R) = 1/R the curvature of the circle with its
radius R. We fix the distance d. Now note that

r1 → r2 =⇒ R→∞.
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This will be natural in the sense that when r1 = r2, the circle
with its radius R becomes a line.

However, the division by zero will mean that when r1 = r2,
the above EM radius formula makes sense and R = 0. What
does it mean? Here, note that, however, then the curvature
K = K(0) = 0 by the division by zero calculus; that is, the
circle with its radius R becomes a line, similarly. The curvature
of a point (circle of radius zero) is zero.

16.8 Vibration
In the typical ordinary differential equation

m
d2x

dt2
= −kx,

we have a general solution

x = C1 cos(ωt+ C2), ω =

√
k

m
.

If k = 0, that is, if ω = 0, then the period T that is given by

T =
2π

ω

should be understood as T = 0?
In the typical ordinary differential equation

m
d2x

dt2
+ kx = f cosωt,

we have a special solution

x =
f

m

1

|ω2 − ω2
0|

cosωt, ω0 =

√
k

m
.

Then, how will be the case

ω = ω0
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?
For example, for the differential equation

y′′ + a2y = b cosλx,

we have a special solution, with the condition λ 6= a

y =
b

a2 − λ2
cosλx.

Then, when λ = a, by the division by zero calculus, we obtain
the special solution

y =
bx sin(ax)

2a
+
b cos ax

4a2
.

16.9 Spring or circut
We will consider a spring with two spring constants {kj} in a
line. Then, the spring constant k of the spring is given by the
formula

1

k
=

1

k1
+

1

k2
,

by Hooke’s law. We know, in particular, if k1 = 0, then

1

k
=

1

0
+

1

k2
,

and by the division by zero,

k = k2,

that is very reasonable. In particular, by Hooke’s law, we see
that

0

0
= 0.

As we saw for the case of harmonic mean, in this case k1 = 0,
the zero means that the spring does not exist.

The corresponding result for the case of Ohmu’s law is sim-
ilar and valid.
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16.10 Motion
A and B start at the origin on the real positive axis with, for
t = 0

d2x

dt2
= a,

dx

dt
= u

and
d2x

dt2
= b,

dx

dt
= v,

respectively. After the time T and at the distance X from the
origin, if they meet, then we obtain the relations

T =
2(u− v)
b− a

and
X =

2(u− v)(ub− va)
(b− a)2

.

For the case a = b, we obtain the reasonable results T = 0 and
X = 0.

We will consider the motion (x, y) represented by x = cos θ, y =
sin θ from (1, 0) to (−1, 0) (0 ≤ θ ≤ π) with the condition

vx =
dx

dt
= − sin θ

dθ

dt
= V (constant).

Then, we have that

vy =
dy

dt
= −V 1

tan θ
,

and
ay =

d2y

dt2
= −V 2 1

sin3 θ
.

Then we see that

vy(1, 0) = 0, that is, 1

tan 0
= 0,

vy(−1, 0) = 0, that is, 1

tanπ
= 0,
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ay(1, 0) = 0, that is, 1

sin3 0
= 0,

and
ay(−1, 0) = 0, that is, 1

sin3 π
= 0.

16.11 Darcy’s law for fluid through porpous media
Diffusion phenomenon and penetration phenomenon may be
represented by the partial differential equations

∂u

∂t
= ν

∂2um

∂x2

for some constants ν and m.
Indeed, density u and pressure p may be related by equation

of state
u = γpα,

with some constants γ and α.
By the conservative law, we have, for porocity ν and velocity

v

∂(uv)

∂x
= −ν ∂u

∂t
.

At the last, by Darcy’s law, we have for some constant k

v = −k ∂p
∂x
.

By chancelling v, p from three equations we obtain

∂u

∂t
=

k

νγ(α+ 1)

∂

∂x

(
∂

∂x
u1+1/α

)
([34], 21-22). As basic references, see ([22, 5, 17]).

Be setting m = 1 + 1/α, we have the desired equation.
Note that for α = 0, with the division by zero 1/0 = 0, we

have the right differential equation.
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Meanwhile, for α = −1, by the division by zero calculus, we
have

∂u

∂t
=

k

νγ

∂2

∂x2
(− log u) .

How will be this partial differential equation?

We can find many and many the division by zero and division
by zero calculus in physics.
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17 INTERESTING EXAMPLES IN THE
DIVISION BY ZERO

We will give interesting examples in the division by zero. In-
deed, the division by zero may be looked in the elementary
mathematics and also in the universe.

• For the line
x

a
+
y

b
= 1,

if a = 0, then by the division by zero, we have the line
y = b. This is a very interesting property creating new
phenomena at the term x/a for a = 0.
Note that here we can not consider the case a = b = 0.
However, for the equation bx+ay = ab, we have the mean-
ing.

• We will consider the line equation, for fixed a > 0
x

−a cosα
+

y

a sinα
= 1.

For P (−a cosα, 0) andQ(0, a sinα), PQ = a and ∠OPQ =
π − α, O is the origin. Then, if α = 0, x = −a and if
α = π/2, then y = a and they are reasonable.

• For the area S(a, b) = ab of the rectangle with its sides of
lengths a, b, we have

a =
S(a, b)

b

and for b = 0, formally

a =
0

0
.

However, there exists a contradiction. S(a, b) depends on
b and by the division by zero calculus, we have, for the
case b = 0, the right result

S(a, b)

b
= a.
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• For the identity

(a2 + b2)(a2 − b2) = c2(a2 − b2); a, b, c > 0,

if a 6= b, then we have the Pythagorean theorem

a2 + b2 = c2.

However, for the case a = b, we have also the Pythagorean
theorem, by the division by zero calculus

2a2 = c2.

• Let αj ; j = 1, ..., n be the solutions of the equation

f(x) = anx
n + an−1x

n−1 + ...+ a0 = 0, an 6= 0,

then, 1
αj
; j = 1, ..., n are the solution of the equation

f

(
1

x

)
= 0,

when we apply the division by zero.

• For any x, y ∈ R if f(x + y) = f(x) + f(y), then for any
positive integer n, we have

f
(x
n

)
=

1

n
f(x).

Then, for n = 0, we have

f
(x
0

)
=

1

0
f(x)

Then, for
x

0
=

1

0
= 0

we have
f(0) = 0,

that is right.
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• For the function

ax2 + bx+ c = a(x− α)(x− β), a 6= 0,

1

ax2 + bx+ c
=

1

a(x− α)(x− β)
.

Then, for x = α for α 6= β, we have

− 1

a(α− β)2.
For α = β, we have 0.

• In a Hilbert space H, for a fixed member v and for a given
number d we set

V = {y ∈ H; (y, v) = d}

and for fixed x ∈ H

d(x, V ) :=
|(x, v)− d|
‖v‖

.

If v = 0, then, (y, v) = 0 and d has to be zero. Then, since
H = V , we have

0 =
0

0
.

• For the equation
a× x = b,

the solutions exist if and only if a · b = 0 and then, we
have

x =
b× a

a · a
+ Ca.

For a = 0, we have x = 0 by the division by zero.
For the equation

a · x = b,

we have the equation

x =
ba

a · a
+ c× a.

If a = 0, then we have x = 0 by the division by zero.
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• We consider 4 lines

a1x+ b1y + c1 = 0,

a1x+ b1y + c′1 = 0,

a2x+ b2y + c2 = 0,

a2x+ b2y + c′2 = 0.

Then, the area S surrounded by these lines is given by the
formula

S =
|c1 − c′1| · |c1 − c′1|
|a1b2 − a2b1|

.

Of course, if |a1b2 − a2b1| = 0, then S = 0.

• 1
sin 0 = 1

cosπ/2 = 0. Consider the linear equation with a

fixed positive constant a
x

a cos θ
+

y

a sin θ
= 1.

Then, the results are clear from the graphic meanings.

• For the tangential line at a point (a cos θ, b sin θ) on the
elliptic curve

x2

a2
+
y2

b2
= 1, a, b > 0 (17.1)

we have Q(a/(cos θ), 0) and R(0, b/(sin θ)) as the common
points with x and y axes, respectively. If θ = 0, then
Q(a, 0) and R(0, 0). If θ = π/2, then Q(0, 0) and R(0, b).

• For the tangential line at the point (a cos θ, b sin θ) on the
elliptic curve (17.1), we shall consider the area S(θ) of the
triangle formed by this line and x, y axes

S(θ) =
ab

| sin θ|
.

Then, by the division by zero calculus, we have S(0) = 0.
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• The common point of B (resp. B′) of a tangential line of
(17.1) and the line x = a (resp. x = −a) is given by

B

(
a,
b(1− cos θ)

sin θ

)
.

(resp.

B′
(
−a, b(1 + cos θ)

sin θ

)
.

) The circle with its diameter BB′ is given by

x2 + y2 − 2b

sin θ
y − (a2 − b2) = 0.

Note that this circle passes two forcus points of the elliptic
curve. Note that for θ = 0, we have the reasonable result,
by the division by zero calculus

x2 + y2 − (a2 − b2) = 0.

In the classical theory for quadratic curves, we have to
arrange globally it by the division by zero calculus.

• On the real line, we look at the point P with angle α and
β with a distance l. Then, the high of the point P is given
by

h =
l sinα sinβ

sin(α− β)
.

Then, if α = β, then, by the division by zero, h = 0.

• We consider two tangential lines from a point A for a circle
C and another line with two common points P and Q with
C in the way A-P-Q. Let B be the common point with the
line and two tangential points in the way A-P-B-Q. Then,
we know the identity

AP

PB
=
AQ

QB
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or
2

AB
=

1

AP
+

1

AQ
.

These identities are valid even if P=B=Q with

AP

0
=
AQ

0
= 0.

Similarly, we consider two chords AB and CD of a circle
with a common point P. Then we have

PA

PC
=
PD

PB
.

If C = P = B, then we have

AP

0
=
PD

0
= 0.

• On the complex plane, the points {zj ; j = 1, 2, 3, 4} on a
circle if and only if

2

z1 − z2
=

1

z1 − z2
+

1

z1 − z4
.

If z1 = z2, then we have, by the division by zero

z1 =
z1 + z2

2
.

For 4 points {zj ; j = 1, 2, 3, 4} on the complex plane, let θ
be the angle for the lines z1z2 and z3z4. Then, we have

cos θ =
1

2

(z2 − z1)(z4 − z3) + (z2 − z1)(z4 − z3)
|z2 − z1||z4 − z3|

.

If z1 = z2, then we have, by the division by zero, θ = π/2.
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• We see that z belongs to the closed convex hull of {z1, z2, ..., zn}
if and only if

λ1
z − z1

+
λ2

z − z2
+ ...+

λn
z − zn

= 0

for
λj ≥ 0;

n∑
j=1

λ2j 6= 0.

For n = 1, the statement is valid with the division by zero

λ1
z − z1

= 0

and
z = z1,

λ1
0

= 0.

Furthermore, for z = z1 we have the very interesting iden-
tity

λ2
z1 − z2

+ ...+
λn

z1 − zn
= 0.

• We understand, by the division by zero, for the function

f(z) =
z

|z|
,

f(0) =
0

|0|
=

0

0
= 0,

as in the sign function.

• We fix the lines y = d and x = L (d, L > 0). We consider
a line through two points (0, t); t > d and (L, d), and let D
be the common point with the line and the x axis. Then,
we have the identity

D

L
=

t

t− d
.
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When t = d, by the division by zero, from d/0 = 0 we
have D = 0 which is reasonable in our new mathematics.
However, from the identity

t

t− d
= 1 +

d

t− d
,

by the division by zero calculus, we have another reason-
able result D = L.

• We consider the line through the fixed point P(−1, 1) and
Q(x, 0), x ≥ 0 and the mapping

x =
−a
a− 1

= −1− 1

a− 1
.

This function maps [0, 1) in the y axis onto [0,∞) on the
x axis in one to one way. For a = 1, by the division by
zero calculus, we have x = −1 and so the function maps
[0, 1] in the y axis onto {−1} ∪ [0,∞) on the x axis in one
to one way.
Then, note that for

L(x) =
√

1 + (1 + x)2

we have
L(−1) = 1.

• We recall the Bramaguputa (598-668?) theorem. We as-
sume that for points A,B,C,D on a circle, AB = a,BD =
d,CD = c,DA = b. Let P be the common point of the
lines AB and DC, and we set BP = e, CP = f . Then, we
have

e =
dcb+ ad2

(b− c)(b+ d)

and
f =

abd+ cd2

(b− c)(b+ d)
.
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If b = c, then we have e = f = 0.
Meanwhile, on the complex z plane, for four points A(a),
B(b), C(c), D(d) on a circle |z| = r. Let P (p) be the com-
mon point of the lines AB and CD. Then, we have

p =
bcd+ acd− abd− abc

cd− ab
.

Note that for cd− ab = 0, we have

p =
0

0
= 0.

• The area S(x) surrounded by two x, y axes and the line
passing a fixed point (a, b), a, b > 0 and a point (x, 0) is
given by

S(x) =
bx2

2(x− a)
.

For x = a, we obtain, by the division by zero calculus, the
very interesting value

S(a) = ab.

• For example, for fixed point (a, b); a, b > 0 and fixed a line
y = (tan θ)x, 0 < θ < π, we will consider the line L(x)
passing two points (a, b) and (x, 0). Then, the area S(x)
of the triangle surrounded by three lines y = (tan θ)x,
L(x) and the x axis is given by

S(x) =
b

2

x2

x− (a− b cot θ)
.

For the case x = a− b cot θ, by the division by zero calcu-
lus, we have

S(a− b cot θ) = b(a− b cot θ).

Note that this is the area of the parallelogram through the
origin and the point (a, b) formed by the lines y = (tan θ)x
and the x axis.
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• We consider the circle

h(x2 + y2) + (1− h2)y − h = 0

through the points (−1, 0), (1, 0) and (0, h). If h = 0, then
we have

y = 0.

However, from the equation

x2 + y2 +

(
1

h
− h
)
y − 1 = 0,

by the division by zero, we have an interesting result

x2 + y2 = 1.

• We consider the regular triangle with the vertices

(−a/2,
√
3a/2), (a/2,

√
3a/2).

Then, the area S(h) of the triangle surrounded by the
three lines that the line through (0, h+

√
3a/2) and

(−a/2,
√
3a/2),

the line through (0, h+
√
3a/2) and (a/2,

√
3a/2) and the

x- axis is given by

S(h) =

(
h+ (

√
3/2)a

)2
2h

.

Then, by the division by zero calculus, we have, for h = 0,

S(0) =

√
3

2
a2.

• Similarly, we will consider the cone formed by the rotation
of the line

kx

a(k + h)
+

y

k + h
= 1
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and the x, y plane around the z- axis (a, h > 0, and a, h
are fixed). Then, the volume V (x) is given by

V (k) =
π

3

a2(k + h)3

k2
.

Then, by the division by calculus, we have the reasonable
value

V (0) = πa2h.

• For the sequence

an =

(
1 +

1

n

)n

,

we have, of course, limn→∞ an = e. Meanwhile, by for-
mally, we have

a0 =

(
1 +

1

0

)0

= 10 = 1.

However, we obtain

a0 = exp

{
n log

(
1 +

1

n

)}
n=0

= e, (17.2)

by the division by zero calculus. Indeed, for x = 1/n, we
have

n log

(
1 +

1

n

)
=

1

x

(
x− x2

2
+ ...

)
and this equals 1 for the point at infinity, by the division
by zero calculus. Note that for the definition by exponen-
tial functions by (17.2) is fundamental.

• For example, for the plane equation
x

a
+
y

b
+
z

c
= 1,

for a = 0, we can consider the line naturally, by the divi-
sion by zero

y

b
+
z

c
= 1.
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• For the Gauss map function

f(x) =
1

x
−
[
1

x

]
,

we have, automatically, by the division by zero

f(0) = 0.

• For the product and sum representations

Π∞
ν=−∞,ν ̸=0

(
1− z

νπ

)
exp

z

νπ

and
∞∑

ν=−∞,ν ̸=0

(
log
(
1− z

νπ

)
+

z

νπ

)
,

we do not need the conditions ν 6= 0, because, the corre-
sponding terms are automatically 1 and zero, respectively,
by the division by zero.

• Let X and Y be norm spaces and T be a bounded linear
operator from X to Y. Then, its norm is given by

||T || = sup
x ̸=0

||Tx||
||x||

.

However, if x = 0, then Tx = 0 and so, for x = 0,
||Tx||
||x||

= 0.

Therefore, we do not need the condition x 6= 0 in the
definition.

• For aj > 0, we have the inequality

(a1 + a2 + · · ·+ an)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
≥ n2.

If an = 0, by the division by zero, the inequality holds for
n− 1.
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• For the harmonic numbers

Hn = 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

n

=
1

0
+

1

1
+

1

2
+

1

3
+ · · ·+ 1

n
,

we have
Hn = Hn−1 +

1

n
.

Then, H1 = 1 and H2 = 3/2, and we obtain

H0 =
1

0
= 0

(M. Cervnka: 2017.9.22.).

• We consider the Weierstrass function

E(z, q) = (1− z) exp
(
0 + z +

1

2
z2 +

1

3
z3 + · · ·+ 1

q
zq
)
.

For q = 0, from
1

q
zq = 0,

we obtain automatically

E(z, 0) = 1− z.

• In the Fermat theorem that for a prime number p, a is an
integer with no common integer with p, then

ap−1 ≡ 1

with mod p, from
1

a
≡ ap−2

with mod p, we have formally
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1

0
≡ 0

with mod p (M. Cervnka: 2017.9.22.).

• For the solutions

x =
−b±

√
b2 − 4ac

2a

of the quadratic equation

ax2 + bx+ c = 0,

we have, the solution, for a = 0 and b 6= 0,

x = −c
b
,

by the division by zero calculus. For this viewpoint we see
the following representation of the general solution

x =
2c

−b±
√
b2 − 4ac

.

Meanwhile, V. V. Puha got the representation

x =
c

b

(a
a
− 1
)
+
−b±

√
b2 − 4ac

2a

(V. V. Puha: 2018.6.9.5:28).

• LetX be a nonnegative random variable with a continuous
distribution F , then the mean residual life function M(x)
is given by, if 1− F (x) > 0,

M(x) =

∫∞
x (1− F (ξ))dξ

1− F (x)
.

However, if 1−F (x) = 0, automatically, we have M(x) =
0, by the division by zero.
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• As in the line case, in the hyperbolic curve

x2

a2
− y2

b2
= 1, a, b > 0, (17.3)

by the representations by parameters

x =
a

cos θ
=
a

2

(
1

t
+ t

)
and

y =
b

tan θ
=
b

2

(
1

t
− t
)
,

the origin (0, 0) may be included as the point of the hy-
perbolic curve, as we see from the cases θ = π/2, 0 and
t = 0.
In addition, from the fact, we will be able to understand
that the asymptotic lines are the tangential lines of the
hyperbolic curve.
The two tangential lines of the hyperbolic curve with gra-
dient m is given by

y = mx±
√
a2m2 − b2 (17.4)

and the gradients of the asymptotic lines are

m = ± b
a
.

Then, we have asymptotic lines y = ± b
ax as tangential

lines.
The common points of (17.3) and (17.4) are given by(

± a2m√
a2m2 − b2

,± b2m√
a2m2 − b2

)
.

For the case a2m2 − b2 = 0, they are (0, 0).
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• We will consider a general cone quadratic curve. For this
purpose, we will consider the line x = −k, (k > 0) and a
fixed point O = F (0, 0). Then a general cone curve may
be represented as

PF

PH
=

r

k + cos θ
= e

with H(−k, y), P = (x, y), PF = r and θ = ∠PFE,
E = (1, 0).
Then, we will consider the case e = 0. Of course, then the
origin may be a point circle at the origin. Meanwhile, for
k + r cos θ = 0; that is, we have the line x = −k. These
two cases may be considered as a family of cone quadratic
curves.

• We consider the surface represented by the equation

x2

a2
+
y2

b2
− z2

c2
= 1, a, b, c > 0.

For the parameter representations

y

b
+
z

c
= λ

(
1 +

x

a

)
,
y

b
− z

c
=

1

λ

(
1− x

a

)
and

y

b
+
z

c
= µ

(
1− x

a

)
,
y

b
− z

c
=

1

µ

(
1 +

x

a

)
,

we do not need to assume that λ, µ 6= 0.

• We fix a circle

x2 + (y − a)2 = a2, a > 0.

At the point (2a + d, 0), d > 0, we consider two tangen-
tial lines for the circle. Let 2θ is the angle between two
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tangential lines at the point (2a + d, 0), Then, the area
S(h) = S(θ) and the length L(x) = L(θ) are given by

S(h) = S(θ) =
a√
h
(h+ 2a)

3
2

=
a2

cos θ

(
sin θ + 2 +

1

sin θ

)
and

L(h) = L(θ) =
a√
h

√
h+ 2a

= a

(
1

cos θ
+ tan θ

)
,

respectively. For h = 0 and θ = 0, by the division by zero
calculus, we see that all are zero.

• We consider two spheres defined by

x2 + y2 + z2 + 2ajx+ 2bjy + 2cjz + 2dj = 0, j = 1, 2.

Then, the angle θ by two spheres is given by

cos θ =
a1a2 + b1b2 + c1c2 − (d1 + d2)√

a21 + b21 + c21 − 2d1
√
a22 + b22 + c22 − 2d2

.

If two spheres are orthogonal or one sphere is a point
sphere, then cos θ = 0.

• For the parabolic equation

y2 = 4px,

two points (pt2, 2pt) and (ps2, 2ps) is a diameter if and
only if

(s− t){t(s+ t) + 2} = 0; s = −t− 2

t
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and the diameter r is given by

r2 = p2(t− s)2{(t+ s)2 + 4}.

Here, we should consider the case t = s = 0 as r = 0 and

0 = −0− 2

0
,

and the x and y axes are the orthogonal two tangential
lines of the parabolic equation.

• For the parameter equation

x = t− 1

t
,

y = t2 +
1

t2

we have
y = x2 + 2.

For t = 0, we have x = y = 0.
For the function

y2 = 4x+ 4,

for x = r cos θ, y = r sin θ we have

r =
2

1− cos θ
.

Note that for θ = 0, r = 0.

• For the integral equation, for a constant k∫ x

0
ydx = ky,

we have the general solution

y = C exp
x

k
.
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If k = 0, then, of course, we have, y = C.
For the integral equation∫ x

0
ydx = k

∫ x

0

√
1 + (y′)2dx

we have the solution

y =
k

2

{
exp

x

k
+ exp

(
−x
k

)}
.

If k = 0, then, we should have y = 0.

• We consider the Cayley transform; for

A =

(
0 cot θ

2

− cot θ
2 0

)
and

U = (A+ E)(A− E)−1 =(
cos θ − sin θ
sin θ cos θ

)
.

Then, for θ = π, we have the right result, by the division
by zero calculus as in

A = O

and
U =

(
−1 0
0 −1

)
.
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18 WHAT IS THE ZERO?
The zero 0 as the complex number or real number is given clearly
by the axioms by the complex number field and real number
field, respectively. For this fundamental idea, we should con-
sider the Yamada field containing the division by zero. The
Yamada field and the division by zero calculus will arrange our
mathematics, beautifully and completely; this will be our real
and complete mathematics.

Standard value
The zero is a center and stand point (or bases, a standard

value) of the coordinates - here we will consider our situation
on the complex or real 2 dimensional spaces. By stereographic
projection mapping or the Yamada field, the point at infinity
1/0 is represented by zero. The origin of the coordinates and
the point at infinity correspond with each other.

As the standard value, for the point ωn = exp
(
π
n i
)

on the
unit circle |z| = 1, for n = 0:

ω0 = exp
(π
0
i
)
= 1,

π

0
= 0.

For the mean value

Mn =
x1 + x2 + ...+ xn

n
,

we have
M0 = 0 =

0

0
.

Fruitful world
For example, in very general partial differential equations,

if the coefficients or terms are zero, we have some simple dif-
ferential equations and the extreme case is all terms zero; that
is, we have the trivial equation 0 = 0; then its solution is zero.
When we consider the converse, we see that the zero world is
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a fruitful one and it means some vanishing world. Recall the
Yamane phenomena, the vanishing result is very simple zero,
however, it is the result from some fruitful world. Sometimes,
zero means void or nothing world, however, it will show some
change as in the Yamane phenomena.

From 0 to 0; 0 means all and all are 0

As we see from our life figure, a story starts from the zero
and ends to the zero. This will mean that 0 means all and all
are 0, in a sense. The zero is a mother of all.

Impossibility
As the solution of the simplest equation

ax = b (18.1)

we have x = 0 for a = 0, b 6= 0 as the standard value, or the
Moore-Penrose generalized inverse. This will mean in a sense,
the solution does not exist; to solve the equation (18.1) is im-
possible. We saw for different parallel lines or different parallel
planes, their common point is the origin. Certainly they have
the common point of the point at infinity and the point at in-
finity is represented by zero. However, we can understand also
that they have no solutions, no common points, because the
point at infinity is an ideal point.

We will consider the point P at the origin with starting at
the time t = 0 with velocity V > 0 and the point Q at the point
d > 0 with velocity v > 0. Then, the time of coincidence P=Q
is given by

T =
d

V − v
.

When V = v, we have, by the division by zero, T = 0. This
zero represents impossibility. We have many such situations.

We will consider the simple differential equation

m
d2x

dt2
= 0,m

d2y

dt2
= −mg (18.2)
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with the initial conditions, at t = 0

dx

dt
= v0 cosα,

dy

dt
= v0 sinα; x = y = 0.

Then, the highest high h, arriving time t, the distance d from
the starting point at the origin to the point y(2t) = 0 are given
by

h =
v20 sinα

2g
, d =

v20 sin 2α

g

and
t =

v0 sinα

g
.

For the case g = 0, we have h = d = t = 0. We considered the
case that they are infinity; however, our mathematics means
zero, which shows impossibility.

These phenomena were looked in many cases on the universe;
it seems that God does not like the infinity.

As we stated already in the Bhāskara’s example – sun and
shadow

Zero represents void or nothing

On ZERO, the authors S. K. Sen and R. P. Agarwal [88]
published its history and many important properties. See also
R. Kaplan [35] and E. Sondheimer and A. Rogerson [90] on the
very interesting books on zero and infinity.

India has a great tradition on ZERO, VOID and INFINITY
and they are familiar with those concepts.

Meanwhile, Europian (containing the USA) people do not
like such basic ideas and they are not familiar with them.
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19 CONCLUSION
Apparently, the common sense on the division by zero with a
long and mysterious history is wrong and our basic idea on the
space around the point at infinity is also wrong since Euclid.
On the gradient or on derivatives we have a great missing since
tan(π/2) = 0. Our mathematics is also wrong in elementary
mathematics on the division by zero.

This book is elementary on our division by zero as the first
publication of books for the topics. The contents have wide
connections to various fields beyond mathematics. The author
expects the readers to write some philosophy, papers and essays
on the division by zero from this simple source book.

The division by zero theory may be developed and expanded
greatly as in the author’s conjecture whose break theory was
recently given surprisingly and deeply by Professor Qi’an Guan
[29] since 40 years proposed in [77] (the original is in [76]).

We have to arrange globally our modern mathematics with
our division by zero in our undergraduate level.

We have to change our basic ideas for our space and world.
We have to change globally our textbooks and scientific

books on the division by zero.

275



References
[1] M. Abramowitz and I. Stengun, HANDBOOK OF

MATHEMATICAL FUNCTIONS WITH FORMULAS,
GRAPHS, AND MATHEMATICAL TABLES, Dover Pub-
lishings, Inc. (1972).

[2] L. V. Ahlfors, Complex Analysis, McGraw-Hill Book Com-
pany (1966).

[3] H. Akca, S. Pinelas and S. Saitoh, The division by zero
z/0 = 0 and differential equations (materials), Int. J. Appl.
Math. Stat. 57(4)(2018), 125-145.

[4] D. H. Armitage and S. J. Gardiner, Classical Potential
Theory, Springer Monographs in Mathematics, Springer
(2001).

[5] A. Bejan, Convection Heat Transfer, John Wiley & Sons,
(1984).
M. Beleggia, M. De. Graef and Y. T. Millev, Magnetostat-
ics of the uniformly polarized torus, Proc. R. So. A(2009),
465, 3581–3604.

[6] S. Bergman and M. Schiffer, Kernel Functions and Elliptic
Differential Equations in Mathematical Physics, Academic
Press Inc. New York (1953).

[7] J. P. Barukčić and I. Barukčić, Anti Aristotle - The
Division Of Zero By Zero, ViXra.org (Friday, June 5,
2015) Germany. All rights reserved. Friday, June 5, 2015
20:44:59.

[8] I. Barukčić, Dialectical Logic - Negation Of Classical Logic,
http://vixra.org/abs/1801.0256.

[9] J. A. Bergstra, Y. Hirshfeld and J. V. Tucker,
Meadows and the equational specification of division
(arXiv:0901.0823v1[math.RA] 7 Jan (2009)).

276



[10] J. A. Bergstra, Conditional Values in Signed
Meadow Based Axiomatic Probability Calculus,
(arXiv:1609.02812v2[math.LO] 17 Sep (2016)).

[11] C. B. Boyer, An early reference to division by zero, The
Journal of the American Mathematical Monthly, 50 (1943),
(8), 487- 491. Retrieved March 6, 2018, from the JSTOR
database.
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